
Wheesht: an AEAD stream cipher.

Peter Maxwell (designer and submitter)
peter@allicient.co.uk

14th March 2014: v0.3

Abstract

Wheesht is an authenticated stream cipher with associated data. In-
ternally, it uses the ARX paradigm and is heavily orientated towards
architectures with 64-bit words. The message authentication follows the
universal hashing style. The blocksize is 256-bits with an internal 512-bit
state that is split in half to provide 256-bits of key material for encryp-
tion and the same for the authentication of each block. Wheesht allows
blocks to be computed out-of-order. The keysize is 512-bits: 256-bits for
the encryption and setting up per-block authentication calculations, and
256-bits for the final authentication calculation.

Performance on target platforms is at least comparable to similar ci-
phers and message authentication codes with the reference implementa-
tion performing encryption with authentication at around 7cpb for mes-
sages of 576 bytes in length.

i

1 Introduction

Wheesht is designed specifically for processors that can handle 64-bit words.
Most consumer and server devices either fall into this category already or will
do in the near future. Similarly, it offers the potential for servers to off-load
cryptographic work to a GPU processor. The cipher is designed in such a
manner as to calculate the keystream and authenication for each block at the
same time, with optimizations available for blocks that are not the first block.

The design borrows heavily from Bernstein’s Salsa20 cipher with some addi-
tional inspiration taken from the compactness and efficiency of Aumasson and
Bernstein’s SipHash. The message authentication code follows on from the uni-
versal hashing method, see http://cr.yp.to/mac/poly1305-20050329.pdf,
section 1, “Genealogy” for a full history. Rather than using multiplication in a
finite field for authentication as akin to GCM or Poly1305, the authenication
mechanism in Wheesht uses the same round function that is used for the main
block calculations. The motivation for this is two-fold: avoiding the risk of naive
implementations not being constant-time when the processor does not natively
support multiplication in a finite field; secondly, it keeps the code size smaller
and avoids unnecessary complexity.

Strictly speaking the cipher can encrypt up to 2128 blocks, in other words 2136

bytes, however it is probably not particularly wise to try and encrypt large
amounts of data under one session, i.e. under the same [key:public message
number:secret message number] combination.

2 Specification

2.1 Preliminaries

Wheesht operates on little-endian 64-bit words. For each 256-bit (4-word) block
of plaintext, Wheesht requires a 512-bit (8 word) state to operate on.

The following are required inputs for the cipher:

• Key, k: a 512-bit key split into two halves, the cipher key kc and a fi-
nal authentication key kf where the four words of kc are specified as
kc0, kc1, kc2, kc3 and similarly for kf ;

• Plain Text (encryption), P [0..n−1], or Cipher Text (decryption), C[0..n−
1]: n blocks, normally 256-bits long excepting the last block which may
be shorter;

• Public Message Number: a 128-bit public message number, np with high-
word np1 and low-word np0, set to zero if not used;

• Secret Message Number: a 128-bit public message number, np with high-
word ns1 and low-word ns0, set to zero if not used;

• Round Count: the number of rounds, tm of PartRound we use for the
main computation steps, i.e. for PartRound-n n = tm;

1

• Final Rount Count: the number of rounds of PartRound we use for the
final transform in the main block and final auth calculation, tf ;

• Required Length of Authentication Tag in Bits: ataglen; and,

• Authentication Tag (decryption only), tag: a 256-bit tag used to verify
message integrity.

The following are required inputs for each block:

• Plain Text (encryption), p or Cipher Text (decryption), c: the plaintext or
ciphertext block, normally 256-bit long and containing 4 words referenced
by p0, p1, p2, p3 and c0, c1, c2, c3;

• Block Number, bc and bad: two 128-bit block counters, one for the cipher-
text and one for associated data, with high-word bc1 and low-word bc0 and
similarly bad1 and bad0;

• Len, l: a unsigned 64-bit integer representating the number of bits to
encrypt in that block, usually equal to the value 256 but on the last block
this may be smaller; and,

• Mode Bits, mode: a bitmask with flags determining certain characteristics
for the current block. The precise bitmask for mode is defined later in this
section.

Wheesht also makes use of 8 64-bit constants, q0, q1, q2, q3, q4, q5, q6, q7 which
are defined later in this section.

2.2 Notation

When not otherwise stated, all numeric constants are little-endian 64-bit words.

The following arithmetic operations are used:

• Exclusive-OR: written as ⊕

• Unsigned addition modulo 264: written as +

• Bitwise left rotation: written as <<

The notation that is normally used for functions is somewhat abused here.
Instead of the standard mathematical notation, we simply donate a function,
say, F (x, y, z), and assume that the results can be returned into the specified
variables.

2

2.3 Naming

The implementation of Wheesht is specified using three parameters - the authtag
length (ataglen), main round count (tm) and final round count (tf) as follows:

Wheesht-tm-tf -ataglen

For example, Wheesht-3-1-256 uses three main rounds, one finalisation round
and creates authentication tags of 256-bits. The key size is fixed at 512-bits so
doesn’t need specified.

The main round count, tm, should not be less than 3.

Four parameter sets are specified for the purposes of CAESAR:

Wheesht-3-1-128
Wheesht-3-1-256
Wheesht-3-3-256
Wheesht-5-7-256

2.4 PartRound

There is a PartRound operation, θ(s0, s1, s2, s3) defined on a 4-word block,
s0, s1, s2, s3 with four rotation constants, rI , rII , rIII , rV as follows.

s0 = (s0 + s1); s1 = (s1 << rI); s1 = (s1 ⊕ s0); s3 = (s3 + s1);

s2 = (s2 + s3); s3 = (s3 << rII); s3 = (s3 ⊕ s2); s1 = (s1 + s3);

s0 = (s0 + s1); s1 = (s1 << rIII); s1 = (s1 ⊕ s0); s3 = (s3 + s1);

s2 = (s2 + s3); s3 = (s3 << rIV); s3 = (s3 ⊕ s2); s1 = (s1 + s3);

A multiple operation of PartRound-n is defined, for n successive operations
donated θn.

2.5 FullRound

The FullRound operation, ω(s0, s1, s2, s3, s4, s5, s6, s7;x0, x1, x2, x3) is defined
on an 8-word block, s0, s1, s2, s3, s4, s5, s6, s7 with an additional 4-word input
x0, x1, x2, x3.

First mix in the 4-word input into the state:

s1 = s1 ⊕ x0;

s3 = s3 ⊕ x1;

s5 = s5 ⊕ x2;

s7 = s7 ⊕ x3;

Next apply the PartRound-n function to the the two 256-bit blocks separately
with n = tm:

3

θtm(s0, s1, s2, s3);

θtm(s4, s5, s6, s7);

Finally, two words from each of the halfs are interchanged:

s0 ↔ s4;

s2 ↔ s6;

2.6 Main Block Calculation

The MainBlock operation, φ(s0, s1, s2, s3, s4, s5, s6, s7; kc0, kc1, kc2, kc3, ns0, ns1, np1, np0, b0, b1, len,mode)
is defined on an 8-word block, s0, s1, s2, s3, s4, s5, s6, s7 and the inputs as speci-
fied in the first section.

First the key is copied into each half of the 8-word state and XORed with the
8 constants. This ensures that s0 6= s4, s1 6= s5, s2 6= s6, s3 6= s7.

s0 = kc0 ⊕ q0;

s1 = kc1 ⊕ q1;

s2 = kc2 ⊕ q2;

s3 = kc3 ⊕ q3;

s4 = kc0 ⊕ q4;

s5 = kc1 ⊕ q5;

s6 = kc2 ⊕ q6;

s7 = kc3 ⊕ q7;

The MainBlock then proceeds as follows:

ω(s0, s1, s2, s3, s4, s5, s6, s7;ns0, ns1, np0, np1);

ω(s0, s1, s2, s3, s4, s5, s6, s7; b0, b1, len,mode);

θtf (s0, s1, s2, s3, s4, s5, s6, s7;);

Note the last PartRound-n uses n = tf not the usual n = tm.

There is a swap between the two halfs of the state:

s0 ↔ s4;

s2 ↔ s6;

Finally, the key is reapplied:

4

s0 = s0 ⊕ kc0;

s1 = s1 ⊕ kc1;

s2 = s2 ⊕ kc2;

s3 = s3 ⊕ kc3;

s4 = s4 ⊕ kc0;

s5 = s5 ⊕ kc1;

s6 = s6 ⊕ kc2;

s7 = s7 ⊕ kc3;

2.7 AuthBlock

There are two authentication functions: a per-block calculation and finalisation
calculation. This is the per-block calculation.

The AuthBlock operation σ(c0, c1, c2, c3; kt0, kt1, kt2, kt3; a0, a1, a2, a3;) takes the
ciphertext as input c0..c3 along with the per-block auth key, kt0..kt3 and returns
the per-block authentication hash a0..a3.

A 4-word state is created:

s0 = kt0 ⊕ c0;

s1 = kt1 ⊕ c1;

s2 = kt2 ⊕ c2;

s3 = kt3 ⊕ c3;

The state is then passed through PartRound-n, where n = tm.

θtm(s0, s1, s2, s3);

Calculate the result:

a0 = s0 ⊕ kt0;

a1 = s1 ⊕ kt1;

a2 = s2 ⊕ kt2;

a3 = s3 ⊕ kt3;

2.8 AuthFinal

The AuthFinal operation, τ(kf0, kf1, kf2, kf3;ns0, ns1, np1, np0, b0, b1, len,mode; af0, af1, af2, af3)
is the second part to the authentication calculation and returns a 4-word final-
isation result.

5

Similar to MainBlock, a 8-word state is created:

s0 = kf0 ⊕ q0;

s1 = kf1 ⊕ q1;

s2 = kf2 ⊕ q2;

s3 = kf3 ⊕ q3;

s4 = kf0 ⊕ q4;

s5 = kf1 ⊕ q5;

s6 = kf2 ⊕ q6;

s7 = kf3 ⊕ q7;

Next we proceed in a manner akin to MainBlock:

ω(s0, s1, s2, s3, s4, s5, s6, s7;ns0, ns1, np0, np1);

ω(s0, s1, s2, s3, s4, s5, s6, s7; b0, b1, len,mode);

θtf (s0, s1, s2, s3, s4, s5, s6, s7);

Note the last PartRound-n uses n = tf not the usual n = tm.

The last swap is not necessary here.

Finally, calculate:

af0 = s0 ⊕ s4 ⊕ kf0;

af1 = s1 ⊕ s5 ⊕ kf1;

af2 = s2 ⊕ s6 ⊕ kf2;

af3 = s3 ⊕ s7 ⊕ kf3;

2.9 AEADEncrypt

For authenticated encryption, each 256-bit = 4-word block of the plaintext
message is XORed with the first half - s0...s3 of the relevant MainBlock result.
For message end blocks that are not 256-bits in length, the input is padded with
zeros up to the blocksize and the len field is set to the number of bits of message
in the last block. The ciphertext need only be as long as the original plaintext
but the padded blocks are required for the authentication calculation. The
second half of the MainBlock result is used to key the authentication calculation
for this block. The result of the authentication calculation for each block is
added word-wise to, auth0...auth3 (initialised to zero at the start of the session),
creating a running sum; at the end of encrypting the plaintext and processing
the associated data, a finalisation authentication calculation is done and that
is added word-wise onto auth0...auth3, forming the authentication tag for the
session.

6

At the start of each session, initiliase auth0, auth1, auth2, auth3 to zero and
perform the encryption first before moving onto the associated data. The block
counters for encryption and the associated data are separate as defined at the
start of this section.

So for plaintext block P [i], i = bc1.2
64+bc0 specified by words p0, p1, p2, p3, first

calculate:

φ(s0, s1, s2, s3, s4, s5, s6, s7; kc0, kc1, kc2, kc3, ns0, ns1, np1, np0, bc0, bc1, len,mode)

Now, the ciphertext is calculated thus:

c0 = p0 ⊕ s0;

c1 = p1 ⊕ s1;

c2 = p2 ⊕ s2;

c3 = p3 ⊕ s3;

The per-block authentication hash is calculated as:

σ(c0, c1, c2, c3; s4, s5, s6, s7; a0, a1, a2, a3;);

And is added into auth0...auth3:

auth0 = auth0 + a0;

auth1 = auth1 + a1;

auth2 = auth2 + a2;

auth3 = auth3 + a3;

Once all the ciphertext is calculated, the associated data is parsed in the same
manner by calculating for each block:

φ(s0, s1, s2, s3, s4, s5, s6, s7; kc0, kc1, kc2, kc3, ns0, ns1, np1, np0, bad0, bad1, len,mode)

Except this time the first half of the result of φ is discarded and the second half
is used for the per-block authentication calculation as before:

σn(ad0, ad1, ad2, ad3; s4, s5, s6, s7; a0, a1, a2, a3;);

And again is added into auth0...auth3:

7

auth0 = auth0 + a0;

auth1 = auth1 + a1;

auth2 = auth2 + a2;

auth3 = auth3 + a3;

Finally, once the associated data is parsed, AuthFinal is used (note that the
block counters are specified as the word-wise addition of the ciphertext and
associated data counter, and that the key used here is kf):

τ(kf0, kf1, kf2, kf3;ns0, ns1, np1, np0, bc0 + bad0, bc1 + bad1, ataglen,mode; af0, af1, af2, af3)

Note: the len field is specified using ataglen.

Now the authentication tag for the session is calculated:

auth0 = auth0 + a0;

auth1 = auth1 + a1;

auth2 = auth2 + a2;

auth3 = auth3 + a3;

The authentication tag is appended onto the end of the ciphertext stream.

2.10 AEADDecrypt

The decrypt operation proceeds in the obvious manner and needs not be explic-
itly defined here.

2.11 mode bits

The following constants are defined:

CRYPT CIPHERTEXTBLOCK = 0x01

CRYPT ADBLOCK = 0x02

CRYPT AUTHFINAL = 0x04

CRYPT HASNSEC = 0x08

CRYPT HASNPUB = 0x10

CRYPT LASTBLOCK = 0x20

The mode is set depending on context as follows:

• When processing ciphertext blocks, the CRYPT CIPHERTEXTBLOCK bit is
set. If CRYPT ADBLOCK is set then CRYPT ADBLOCK cannot be set.

8

• When processing associated data blocks, the CRYPT ADBLOCK bit is set. If
CRYPT ADBLOCK is set then CRYPT CIPHERTEXTBLOCK cannot be set.

• When processing the last block of ciphertext or associated data, the CRYPT LASTBLOCK

bit must be set.

• In this specifcation both CRYPT HASNSEC and CRYPT HASNPUB must always
be set. A cut-down version of the algorithm may be specified in the future
where the message numbers are not used but for now they must be set.

• For the final auth calculation, CRYPT AUTHFINAL and CRYPT LASTBLOCK

are set but CRYPT CIPHERTEXTBLOCK and CRYPT ADBLOCK are not.

Examples follow:

• For a ciphertext block that is not the last block the mode is set to
CRYPT CIPHERTEXTBLOCK || CRYPT HASNSEC || CRYPT HASNPUB .

• For a ciphertext block that is the last block themode is set to CRYPT CIPHERTEXTBLOCK

|| CRYPT HASNSEC || CRYPT HASNPUB || CRYPT LASTBLOCK .

• For an associated data block that is not the last block the mode is set to
CRYPT ADBLOCK || CRYPT HASNSEC || CRYPT HASNPUB .

• For an associated data block that is the last block the mode is set to
CRYPT ADBLOCK || CRYPT HASNSEC || CRYPT HASNPUB || CRYPT LASTBLOCK

.

• For the final auth calculation,mode is set to CRYPT AUTHFINAL || CRYPT HASNSEC

|| CRYPT HASNPUB || CRYPT LASTBLOCK .

2.12 len Values

For the sake of clarity, len should be set to the value 256 for all ciphertext
and associated data blocks that are not the last block. When a ciphertext or
associated data block is the last block, len should be the number of bits in that
last block.

For the final auth calculation, len should be the length of the desired authenti-
cation tag, which is normally 256 but may be specified lower if a shorter tag is
more appropriate.

2.13 Constants

The rotation constants are defined as:

rI = 9

rII = 29

rIII = 33

rIV = 41

The 8 word constants q0..q7 are as follows:

9

q0 = 0x5720796d6f6f6c47

q1 = 0x2073277265746e69

q2 = 0x27617761206f6f6e

q3 = 0x742074666173203b

q4 = 0x6c74736577206568

q5 = 0x6565726220276e69

q6 = 0x77616c622073657a

q7 = 0x000a38303831202e

which is just the conversion of the the string ”Gloomy Winter’s noo awa’; saft
the westlin’ breezes blaw. 1808\n” into 8 little-endian words. The string itself is
the first line of Robert Tannahill’s lyrics for “Gloomy Winter’s Noo Awa” along
with the year it was written.

3 Security Goals

The security goals are specified as follows.

Requirement Bits

“Confidentiality for the plaintext” 256
“Confidentiality for the secret message
number”

128

“Integrity for the plaintext” 256
“Integrity for the associated data” 256
“Integrity for the secret message num-
ber”

128

“Integrity for the public message num-
ber”

128

Note: the public and secret message numbers together cannot be
reused and must be considered a nonce. If a key, public message number
and secret message number are used to encrypt two different messages then both
confidentiality and integrity will be entirely lost.

Wheesht is designed such that any execution paths dependent on secret data
execute in constant time. There are potential optimizations but they are de-
pendent on public data.

4 Security Analysis

4.1 Diffusion

The PartRound function achieves full diffusion after 3 rounds. This ensures that
every bit in the input parameters is guaranteed to affect the whole 256-bits of
state that PartRound-3 operates on.

Each FullRound operation swaps two of the four words in each 4-word state to
ensure the 8-word state is altered at every FullRound, and consequentially each
input bit will affect the full 8-word state.

10

4.2 General Remarks

Using the same assumption as the security analysis for Salsa20 - specifically that
the key is assumed to be a uniform random sequence of bytes, and there is no
reuse of the public-secret message number pair - then it is likely that Wheesht
produces output that is indistinguishable from from “perfect” ciphertexts.

4.3 Security of Authentication

The message authentication is based on the idea of “universal hashing” akin
to Galois Counter Mode, Poly1305, etc. The temporary authentication key for
each block which is obtained from the second half of the main block calculation
serves as a means to create a universal hash. The final auth block is essentially
calculated in a similar manner to the main block calculation but under a separate
key, which is why the total key length required for Wheesht is 512-bits.

It is presumed to be infeasible to break the authentication as the attacker cannot
predict the temporary auth key for each block, and the temporary auth key
is dependent on all the input parameters (including the block counter). The
attacker similarly cannot predict the final auth block as they have no knowledge
of the key and none of those key bits were used during the rest of the calculation.

5 Features

Wheesht offers a number of useful features:

• Reusing a simple round function: the basic round function is used both
for encryption and authentication, obviating the requirement for difficult
calculations in prime fields.

• Constant time: every operation that depends on secret data is constant
time, reducing the window for side-channel attacks.

• ARX construction: the cipher is based on the well tested Addition-Rotate-
XOR paradigm.

• Simple: the design is simple and robust. Despite the somewhat protracted
definition herein, the actual cipher is very simple.

• Light-weight: Wheesht can be implemented with small code or hardware
cost.

• Speed: the performance is at least comparable with similar ciphers.

• Out-of-order calculation: blocks can be calculated out-of-order or in par-
allel, this offers many advantages in terms of performance enhancements
and flexibility.

• Optimized register use: the core round function uses 8 registers, which is
a deliberate attempt to reduce the number of memory transfers required
on the critical path.

11

• Advantage over AES-GCM: the design of Wheesht does not require SBox
lookups nor does it require multiplication in finite fields. Wheesht is also
much simpler than AES-GCM, which reduces potential code-size and the
chance for errors during implementation. Without native AESNI and
finite field arithmetic support on the CPU, Wheesht is likely to be faster
in an optimized implementation.

6 Design Rationale

The designer/designers have not hidden any weaknesses in this cipher.

A weakness would be difficult to conceal. The most likely problem area is the
number of final transformation rounds tf , which the designer has yet to perform
a full analysis on before recommending a fixed value. The constants q0...q7 could
be specified such that the hamming weight of q0 ⊕ q4, q1 ⊕ q5, q2 ⊕ q6, q3 ⊕ q7 is
small; the actual constants were chosen using a line from a favourite traditional
song but can be changed by the CAESAR panel. The rotation constants will
affect how fast diffusion is obtained, however there is a large number of com-
binations that provide the same diffusion performance and the CAESAR panel
are welcome to reselect the rotation constants. Otherwise, the design has been
kept simple so that it is not feasbile that any weakness could be deliberately
hidden.

There were several objectives that motivated the design.

• Ensuring the encryption and authentication were in a sense unified and to
avoid using disparate methods for each.

• Target 64-bit platforms as there is a large proportion of processors with
that word length.

• Design the algorithm in a manner such that the core round function only
required eight registers on the CPU, to minimize memory accesses.

• To allow out-of-order computation of blocks, which adds flexibility and
parallization options.

• Avoid potentially troublesome operations, for example avoiding multipla-
tion in finite fields.

• Ensure that all operations on secret data are constant-time.

By calculating on a 512-bit = 8-word block with a round function that operates
independently on each half, a certain orthogonality can be obtained (each half
starts with a copy of the 256-bit key kc but XORed with different constants).
For example, it is difficult to exploit a related-key attack or otherwise alter the
inputs to the attacker’s advantage because by doing so on one half ensures the
effect on the other half is undesirable.

The second advantage to this structure is that the 8-word state can be split to
provide one half for the keystream and the other for authentication. The block

12

cannot be inverted with only half the data and the authentication hash for that
block cannot be predicted from the keystream block either.

The input parameters are partially layered into the state between the round
function to reduce the degrees of freedom an attacker in control of some inputs
may have.

The round function itself was arrived at after experimentation: essentially, it
offers fast diffusion properties. The rotation constants were arrived at by first
optimizing for diffusion - running the round function with OR instead of ADD
and XOR, with a single 1 bit in the input - and then from the resulting can-
didates selecting constants so the difference from 8 in each is minimized (a
concession for older processors that can only perform rotations one bit at a
time).

The order in which the input parameters for each block are mixed-in was not
determined by accident. It allows a pre-calculation to be preformed in the first
block which can be used for later blocks, i.e. the public and secret numbers are
done first as they do not change for the session so further blocks can proceed
from this saved state.

7 Intellectual Property

As far as I know, Wheesht does not infringe any intellectual property rights.

If any of this information changes, the submitter/submitters will promptly (and
within at most one month) announce these changes on the crypto-competitions
mailing list.

8 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR se-
lection committee regarding the selection or non-selection of this submission as
a second-round candidate, a third-round candidate, a finalist, a member of the
final portfolio, or any other designation provided by the committee. The sub-
mitter/submitters understand that the committee will not comment on the al-
gorithms, except that for each selected algorithm the committee will simply cite
the previously published analyses that led to the selection of the algorithm. The
submitter/submitters understand that the selection of some algorithms is not a
negative comment regarding other algorithms, and that an excellent algorithm
might fail to be selected simply because not enough analysis was available at
the time of the committee decision. The submitter/submitters acknowledge that
the committee decisions reflect the collective expert judgments of the committee
members and are not subject to appeal. The submitter/submitters understand
that if they disagree with published analyses then they are expected to promptly
and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitter/submitters understand that this statement is required
as a condition of consideration of this submission by the CAESAR selection
committee.

13

