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Chapter 1

Specification

The specifications of ACORN-128 are given in this chapter.

1.1 Recommended parameter sets

• Primary Recommendation: ACORN-128
128-bit key, 128-bit nonce, 128-bit tag

1.2 Operations, Variables and Functions

The operations, variables and functions used in ACORN are defined below.

1.2.1 Operations

The following operations are used in ACORN:

⊕ : bit-wise exclusive OR
& : bit-wise AND
∼ : bit-wise NOT
∥ : concatenation
⌈x⌉ : ceiling operation, ⌈x⌉ is the smallest integer not less than x

1.2.2 Variables and constants

The following variables and constants are used in ACORN:

AD : associated data (this data will not be encrypted or decrypted).
adi : one bit of associated data block.
adlen : bit length of the associated data with 0 ≤ adlen < 264 .
C : ciphertext.
ci : one ciphertext bit.
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cai : a control bit at the ith step. It is used to separate the processing
of associated data, the processing of plaintext, and the generation
of authentication tag.

cbi : another control bit at the ith step. It is used to allow a keystream
bit to affect a feedback bit during initialization, processing of as-
sociated data, and the tag generation.

IV 128 : 128-bit initialization vector of ACORN-128.
IV 128,i : the ith bit of IV 128.
K128 : 128-bit key of ACORN-128.
K128,i : the ith bit of K128.
ksi : The keystream bit generated at the ith step.
pclen : bit length of the plaintext/ciphertext with 0 ≤ pclen < 264 .
mi : one data bit.
P : plaintext.
pi : one plaintext bit.
Si : state at the beginning of the ith step.
Si,j : jth bit of state Si . For ACORN-128, 0 ≤ j ≤ 292.
T : authentication tag.
t : bit length of the authentication tag with 64 ≤ t ≤ 128.

1.2.3 Functions

Two Boolean functions are used in ACORN: maj and ch.

maj(x, y, z) = (x&y)⊕ (x&z)⊕ (y&z) ;
ch(x, y, z) = (x&y)⊕ ((∼x)&z) ;

1.3 ACORN-128

ACORN-128 uses a 128-bit key and a 128-bit initialization vector. The associ-
ated data length and the plaintext length are less than 264 bits. The authenti-
cation tag length is less than or equal to 128 bits. We strongly recommend the
use of a 128-bit tag.

1.3.1 The state of ACORN-128

The state size of ACORN-128 is 293 bits. There are six LFSRs being concate-
nated in ACORN-128. The state is shown in Fig.1.1.

1.3.2 The functions of ACORN-128

There are three functions in ACORN-128: the function to generate keystream
bit from the state, the function to compute the overall feedback bit, and the
function to update the state.
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Figure 1.1: The concatenation of 6 LFSRs in ACORN-128. fi indicates the overall
feedback bit for the ith step; mi indicates the message bit for the ith step.

Generate the Keystream Bit. At each step, the keystream bit is computed
using the function ksi = KSG128(Si) :

ksi = Si,12 ⊕ Si,154 ⊕maj(Si,235, Si,61, Si,193) ;

Compute the Feedback Bit. At each step, the feedback bit is computed
using the function fi = FBK128(Si, cai, cbi) :

ksi = KSG128(Si) ;
fi = Si,0⊕(∼Si,107)⊕maj(Si,244, Si,23, Si,160)⊕ch(Si,230, Si,111, Si,66)⊕

(cai&Si,196)⊕ (cbi&ksi) ;

The State Update Function. At each step, the pseudo code for the state
update function Si+1 = StateUpdate128(Si, mi, cai, cbi) is given as :

Si,289 = Si,289 ⊕ Si,235 ⊕ Si,230;
Si,230 = Si,230 ⊕ Si,196 ⊕ Si,193;
Si,193 = Si,193 ⊕ Si,160 ⊕ Si,154;
Si,154 = Si,154 ⊕ Si,111 ⊕ Si,107;
Si,107 = Si,107 ⊕ Si,66 ⊕ Si,61;
Si,61 = Si,61 ⊕ Si,23 ⊕ Si,0;

fi = FBK128(Si, cai, cbi) ;

for j := 0 to 291 do Si+1,j = Si,j+1 ;

Si+1,292 = fi ⊕mi ;

1.3.3 The initialization of ACORN-128

The initialization of ACORN-128 consists of loading the key and IV into the
state, and running the cipher for 1792 steps.

1. Initialize the state S−1792 to 0.

2. Let m−1792+i = K128,i for i = 0 to 127;
Let m−1792+128+i = IV 128,i for i = 0 to 127;
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Let m−1792+256 = K128,i mod 128 ⊕ 1 for i = 0;
Let m−1792+256+i = K128,i mod 128 for i = 1 to 1535;

3. Let ca−1792+i = 1 for i = 0 to 1791;
Let cb−1792+i = 1 for i = 0 to 1791;

4. for i = −1792 to −1, Si+1 = StateUpdate128(Si, mi, cai, cbi);

Note that in the initialization, the keystream bit is used to update the state
since cbi = 1.

1.3.4 Processing the associated data

After the initialization, the associated data AD is used to update the state.

1. Let mi = adi for i = 0 to adlen− 1;
Let madlen = 1;
Let madlen+i = 0 for i = 1 to 255;

2. Let cai = 1 for i = 0 to adlen+127;
Let cai = 0 for i = adlen+128 to adlen+255;
Let cbi = 1 for i = 0 to adlen+255;

3. for i = 0 to adlen+ 255, Si+1 = StateUpdate128(Si, mi, cai, cbi);

Note that even when there is no associated data, we still need to run the cipher
for 256 steps. When we process the associated data, the keystream bit is used to
update the state since cbi = 1. The cipher specification is changed for 128 steps
(since the value of cai is set to 0 for 128 steps) so as to separate the associate
data from the plaintext/ciphertext.

1.3.5 The encryption

After processing the associated data, at each step of the encryption, one plain-
text bit pi is used to update the state, and pi is encrypted to ci.

1. Let madlen+256+i = pi for i = 0 to pclen− 1;
Let madlen+256+pclen = 1;
Let madlen+256+pclen+i = 0 for i = 1 to 255;

2. Let cai = 1 for i = adlen+ 256 to adlen+ pclen+ 383;
Let cai = 0 for i = adlen+ pclen+ 384 to adlen+ pclen+ 511;
Let cbi = 0 for i = adlen+ 256 to adlen+ pclen+ 511;

3. for i = adlen+ 256 to adlen+ pclen+ 511,

Si+1 = StateUpdate128(Si, mi, cai, cbi);

ci = pi ⊕KSG128(Si);

end for;
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Note that even when there is no plaintext, we still need to run the cipher for 256
steps. When we process the plaintext, the keystream bit is not used to update
the state since cbi = 0. The cipher specification is changed for 128 steps (since
the value of cai is set to 0 for 128 steps) so as to separate the processing of
plaintext/ciphertext and the finalization.

1.3.6 The finalization

After processing all the plaintext bits, we generate the authentication tag T .

1. Let madlen+pclen+512+i = 0 for i = 0 to 767;

2. Let cai = 1 for i = adlen+ pclen+ 512 to adlen+ pclen+ 1279;
Let cbi = 1 for i = adlen+ pclen+ 512 to adlen+ pclen+ 1279;

3. for i = adlen+ pclen+ 512 to adlen+ pclen+ 1279,

Si+1 = StateUpdate128(Si, mi, cai, cbi);

ksi = KSG128(Si);

end for;

The authentication tag T is the last t keystream bits, i.e.,
T = ksadlen+pclen+1279−t+1 ∥ ksadlen+pclen+1279−t+2 ∥ · · · ∥ ksadlen+pclen+1279.

1.3.7 The decryption and verification

The decryption and verification are very similar to the encryption and tag gen-
eration. The finalization in the decryption process is the same as that in the
encryption process. We emphasize that if the verification fails, the ciphertext
and the newly generated authentication tag should not be given as output;
otherwise, the state of ACORN-128 is vulnerable to known-plaintext or chosen-
ciphertext attacks (using a fixed IV ).
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Chapter 2

Security Goals

The security goals of ACORN are given in Table 2.1. In ACORN, each key, IV
pair is used to protect only one message. If verification fails, the new tag and
the decrypted ciphertext should not be given as output.

Note that the authentication security in Table 2.1 includes the integrity
security of plaintext, associated data and nonce.

Table 2.1: Security Goals of ACORN-128 (128-bit tag)
Encryption Authentication

ACORN-128 128-bit 128-bit
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Chapter 3

Security Analysis

The following requirements should be satisfied in order to use ACORN securely.

1. Each key should be generated in a secure and random way.

2. Each key and IV pair should not be used to protect more than one mes-
sage; and each key and IV pair should not be used with two different tag
sizes.

3. If verification fails, the decrypted plaintext and the wrong authentication
tag should not be given as output.

If the above requirements are satisfied, we have the following security claims:

Claim 1. The success rate of a forgery attack is 2−t, where t is the tag size. If
the forgery attack is repeated n times, the success rate of a forgery
attack is about n× 2−t.

Claim 2. The state and key cannot be recovered faster than exhaustive key
search if the forgery attack is not successful. We recommend the use
of a 128-bit tag size for ACORN in order to resist repeated forgery
attacks.

If an IV is reused in encryption, or if the plaintext is leaked in the failed ver-
ification, the state can be recovered easily. In [2], it is shown that if the IV
is reused seven times, the security of ACORN is lost. We point out here that
in the new version of ACORN, the secret key of ACORN cannot be recovered
easily from the state, so now ACORN provides low-level resilience against the
nonce reuse attack.

According to our analysis, ACORN is a strong cipher. Since the design
approach of ACORN is very new, we encourage the researchers to conduct
thorough security analysis of ACORN.

In this chapter, we mainly analyze the security of authentication, since it
is very challenging to design and analyze the differential propagation in an
authenticated cipher based on a sequential stream cipher.
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3.1 The security of the initialization

The initialization can be attacked by analyzing the relation between IV and
keystream. In ACORN-128, the IV passes through at least 1792 steps before
affecting ciphertext. This large number of steps in the initialization is to prevent
various attacks against stream cipher initialization: the linear attack (such as
the attack in [14]), differential attacks (such as the attacks in [16] and [15]) and
cube attacks [7, 8].

3.2 The security of the encryption process

We emphasize here that ACORN encryption is a stream cipher with a large
state which is updated continuously. The attacks against a block cipher cannot
be applied directly to ACORN.

Statistical Attacks. If the IV is used only once for each key, it is impossible to
apply a differential attack to the encryption process. It is extremely difficult to
apply a linear attack (or correlation attack) to recover the secret state since the
state of ACORN is updated in a nonlinear way. In general, it would be difficult
to apply any statistical attack to recover the secret state due to the nonlinear
state update function (the statistical correlation between any two states vanishes
quickly as the distance between them increases).

3.3 The security of message authentication

A common approach to attack ACORN authentication is to inject a difference
into the state by modifying ciphertext or associated data. Ensuring the security
of authentication is the most challenging part in the design and security analysis
of ACORN.

A main feature of ACORN-128 is the concatenation of 6 small LFSRs, as
shown in Fig. 1.1. The concatenation of six LFSRs ensures that once a difference
bit is injected into the state (the first difference bit must be injected into the
state through mi), there are many difference bits in the state before the state
difference gets eliminated.

To eliminate the difference in the right most LFSR, the input difference
to that LFSR should have the following linear recurrence (in order to reduce
the number of difference bits in the state, we consider only the shortest linear
recurrence):

dn = dn−59 ⊕ dn−53

Similarly, in order to eliminate the difference in each of the other five LFSRs,
the input difference should have the following linear recurrences:

dn = dn−37 ⊕ dn−34

dn = dn−39 ⊕ dn−33
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dn = dn−47 ⊕ dn−43

dn = dn−46 ⊕ dn−41

dn = dn−61 ⊕ dn−38

Combining the above six linear occurrences, the input difference to those six
registers is given below. There are other input differences, but this difference is
likely the shortest one (290 bits).

1000000000000000000000000000000001100111010100110000010000010100

0001001111100010001110011111000101011000101110101111101101110010

0100011000101010111110101011011000100001001110000010000100011001

0001011001010010010001000010101110100100101010111011100111011000

0111011101101110111000001110111001

Once the input difference to those six registers is known, we are able to
compute the probability that the difference in the state can be eliminated. Note
that the difference in the overall feeback bit fi can always get eliminated with
certain probability by modifying the ciphertext or associated data.

The analysis of the difference in associated data and the analysis of the
difference in ciphertext are similar (except that the ciphertext leaks the state
information which is useful for the attack). The reason is that when the associ-
ated data gets processed, the keystream bit is used as part of the feedback bit;
when the ciphertext gets processed, the keystream is generated and xored to
the ciphertext, then the decrypted plaintext bit is used as part of the feedback
bit (i.e., the keystream bit also affects the input difference to the LFSRs).

We note that at each step, there are three nonlinear functions being involved:
two maj functions and one ch function. The differential property of function
maj is that if there are one or two input difference bits, then the output differ-
ence is 1 with probability 0.5; if there are three input difference bits, then the
output difference is 1 with probability 1. The differential property of function
ch(x, y, z) is that if there are differences in both y and z, then the output differ-
ence is one with probability 1; otherwise, if there is any difference in the input,
the output difference is 1 with probability 0.5.

According to the above input difference to the LFSRs and the differential
properties of the nonlinear functions, the probability to eliminate the difference
in the state is 2−189 (in a successful attack, proper difference should be injected
into associated data or ciphertext so that the input difference to LFSRs is not
affected by the nonlinear functions). With this differential probability, ACORN
is able to provide 128-bit MAC security.
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Chapter 4

Features

• Novel design. ACORN is a sequential authenticated cipher which is ef-
ficient in hardware and software, and its authentication security can be
analyzed easily.

• ACORN is a sequential authenticated cipher, and one bit of message is
processed in one step. This feature benefits light-weight hardware imple-
mentation, and the control circuit in the hardware implementation can be
greatly simplified.

• ACORN allows parallel computation. In ACORN, 32 steps can be com-
puted in parallel. This parallel feature benefits high speed hardware and
software implementation.

• Length information of associated data and plaintext/ciphertext is not
needed in ACORN, i.e., ACORN does not need to check the length of
message, and ACORN does not need to pad the message to a multiple of
block size (the length of the bits being padded is fixed in ACORN). This
feature reduces further the cost of hardware implementation.

• Efficient in Hardware.
According to our estimation, the hardware cost of ACORN-128 is slightly
higher than that of TRIVIUM [6], which is very efficient in hardware.

• Efficient in Software
In ACORN, 32 steps can be computed in parallel, so its software speed is
reasonably fast.

• ACORN has several advantages over AES-GCM: ACORN is more hard-
ware efficient than AES-GCM (especially for hardware resource and en-
ergy consumption). On the general computing devices (no AES-NI and no
polynomial computing circuits), ACORN is more efficient than AES-GCM
in software. The code size of ACORN is very small.
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Chapter 5

The Performance of
ACORN

Hardware Performance. ACORN is a bit-wise cipher, and it uses very simple
feedback circuits and control circuits, so we expect that ACORN is very light-
weight in hardware. We compare ACORN with TRIVIUM [6], a well-known
hardware efficient stream cipher: the state size of ACORN (293 bits) is very close
to that of TRIVIUM (288 bits), and the feedback circuits of ACORN are slighly
more complicated than that of TRIVIUM, so we expect the implementation cost
of ACORN is very close to that of TRIVIUM.

Note that 32 steps of ACORN can be implemented in parallel in hardware,
so we expect that the speed of ACORN is very fast in hardware.

Software Performance. We implemented ACORN in C code. We tested the
speed on Intel Core i5-2540M 2.6GHz processor (Sandy Bridge) running 64-bit
Ubuntu 11.04 and turning off the Turbo Boost. The compiler being used is gcc
4.5.2, and the optimization option “-O3” is used. In our test, associated data is
not considered, and 128-bit tag is used. The test is performed by processing a
message repeatedly and printing out the final message.

Table 5.1: The speed (cpb) of ACORN for different message length on Intel
Sandy Bridge processor

64B 128B 256B 512B 1024B 2048B 4096B

72.1 41.5 26.3 18.6 14.7 12.8 11.9
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Chapter 6

Design Rationale

ACORN is designed to be efficient in hardware (focus), and also efficient in
software.

In order to be efficient in hardware, we use a bit-wise stream cipher for its
well-known hardware efficiency (such as A5/1 [1], Grain [9] and Trivium [6]). In
order to resist the traditional attacks (correlation attacks [13, 12, 10, 11, 3] and
algebraic attacks [4, 5]) on stream cipher, the state is updated in a nonlinear
way, and every state bit affects the whole state.

We inject message into the state so that we could obtain authentication se-
curity almost for free. The challenge is that in a bit-wise stream cipher based on
nonlinear feedback registers, it is tremendously difficult to trace the differential
propagation in the state, especially if we want to achieve high authentication
security (such as 128-bit). Our design focus is to solve this problem so that
the authentication security could be easily analyzed. Our solution is to use the
concatenation of several linear feedback shift registers to ensure that once there
is difference in the state, the number of difference bits in the state would be
sufficiently large before the difference gets eliminated. When there are differ-
ence bits in the state, the nonlinear function FBK introduces difference noise
to the feedback bit fi so as to reduce the success rate of forgery attack. If an
attacker intends to modify the ciphertext, the difference in the keystream bits
would also affect the state through the decrypted plaintext bits.

In order to further reduce the hardware complexity, ACORN does not check
the message length in decryption and verification, and in ACORN, the padding
bits (both length and values) are always fixed. In order to separate the process-
ing of associated data and plaintext/ciphertext, the cipher feedback is modified
for 256 steps (through modifying cai) before the plaintext/ciphertext gets pro-
cessed. Similarly, in order to separate the processing of plaintext/ciphertext
and the finalization, the cipher feedback is modified (through modifying cai) for
256 bits before the finalization.

In order to be fast in hardware and software, 32 steps of ACORN can be
computed in parallel.

In order to have high security for stream cipher, when we select the tap
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positions, we try to have tap distances which are prime or contain some large
prime factor.

In order to resist the differential attack against ACORN for fixed IV (such
as the differential attack against Phelix [17]), we require that each key/IV pair
is used to protect only one message, and the decrypted plaintext should not be
disclosed if the verification fails.
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Chapter 7

No Hidden Weakness

We state here that the designer/designers have not hidden any weaknesses in
this cipher.
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Chapter 8

Intellectual property

We state that ACORN is not patented and it is freely available for all applica-
tions.

If any of this information changes, the submitter will promptly (and within at
most one month) announce these changes on the crypto-competitions mailing
list.
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Chapter 9

Consent

The submitter hereby consents to all decisions of the CAESAR selection commit-
tee regarding the selection or non-selection of this submission as a second-round
candidate, a third-round candidate, a finalist, a member of the final portfolio,
or any other designation provided by the committee. The submitter under-
stands that the committee will not comment on the algorithms, except that for
each selected algorithm the committee will simply cite the previously published
analyses that led to the selection of the algorithm. The submitter understands
that the selection of some algorithms is not a negative comment regarding other
algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee de-
cision. The submitter acknowledges that the committee decisions reflect the
collective expert judgments of the committee members and are not subject to
appeal. The submitter understands that if he disagrees with published analyses
then he is expected to promptly and publicly respond to those analyses, not to
wait for subsequent committee decisions. The submitter understands that this
statement is required as a condition of consideration of this submission by the
CAESAR selection committee.
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Chapter 10

Changes

We made the following tweaks in the second round submission:

1. The number of steps in the initialization, padding of associated data,
padding of plaintext, and finalization are changed from 1536, 512, 512,
512 to 1792, 256, 256, 768, respectively.
The main reason from the change is to increase the steps in the initial-
ization, so as to provide better protection of the secret key when nonce is
reused.

2. In the initialization stage, the key bits are now used as inputs in 1664
steps. (In version 1, the key bits are used only in 128 steps.) The reason
for this tweak is to strengthen the cipher against the nonce reuse attack (in
encryption/decryption) so that the secret key cannot be easily recovered
in the nonce reuse attack.
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