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Changes

From v1.0 to v1.1

– Clarified the handling of illegal input length, specially, when a ciphertext length is not a multiple of
a block.

– Updated the numbers for software implementation on x86 64.
– Added references which are found after the submission of v1.0.
– Corrected typos.
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1 Specification

Section 1.1 specifies the mode of operation of Minalpher. Section 1.2 shows the exact parameters in our
design. Section 1.3 defines the maximum input message length to Minalpher. Section 1.4 specifies the
underlying primitive in Minalpher.

1.1 Mode of Operation

Minalpher supports two functionalities: authenticated encryption with associated data (AEAD) and mes-
sage authentication code (MAC). In this section, we specify these modes of operation.

Subsection 1.1.1 gives notations used in the modes of operation. Subsection 1.1.2 specifies a padding
rule used in the modes of operation. Subsection 1.1.3 specifies a primitive which we call tweakable Even-
Mansour. The construction dates back to Kurosawa [27, 28], who builds a tweakable block-cipher from
a permutation-based block-cipher proposed by Even and Mansour [18]. Tweakable block-ciphers are
originated by Liskov, Rivest and Wagner [33]. Subsection 1.1.4 specifies the AEAD mode of operation.
Subsection 1.1.5 specifies the MAC mode of operation. These modes are inspired by OCB [45] and
PMAC [9].

1.1.1 Notations

We denote the length in bits of a bit string a by |a|. We denote the i-th bit of a bit string a by ai where
i is from 0 to |a| − 1. For example, a = an−1 · · · a1a0 when |a| = n. We denote an empty string by ε.

Let GF(2n) denote the field with 2n points. To add two points in GF(2n), take their bitwise xor. We
denote this operation by a ⊕ b. To multiply two points a, b in GF(2n), fix a primitive polynomial g(y).
We denote this operation ab.

1.1.2 Padding Rule

We use the following padding rule: the padding of a bit string X to a sequence of n-bit blocks is denoted
by X∥ pad(|X|), where

∣∣X∥ pad(|X|)∣∣ is a multiple of n.
The modes of operation of AEAD and of MAC make use of the following padding.

Definition 1. The padding appends a single bit 1 followed by the minimum number of bits 0 such that
the length of the result is a multiple of the block length.

1.1.3 Tweakable Even-Mansour

The modes of operation of Minalpher are based on a primitive which we call tweakable Even-Mansour.
It is a tweakable block-cipher based on a permutation, denoted by P , which operates on n bits such

that n mod 2 = 0. We denote the inverse by P−1. It consists of two algorithms, the encryption algorithm,
denoted by TEM Enc, and the decryption algorithm, denoted by TEM Dec.

TEM Enc is specified in Algorithm 1, which accepts the following inputs,

– a secret key, denoted by K, such that K ∈ {0, 1}n/2,
– tweaks, denoted by (flag, N, i, j), such that
• flag ∈ {0, 1}s
• N ∈ {0, 1}n/2−s

• i and j are integers such that (i, j) ̸= (0, 0), and
– a message, denoted by M , such that M ∈ {0, 1}n,

and returns an n-bit value C.
TEM Dec is specified in Algorithm 2, which is used in the decryption algorithm of the AEAD mode

of operation. TEM Dec accepts the following inputs,

– a secret key, denoted by K, such that K ∈ {0, 1}n/2,
– tweaks, denoted by (flag, N, i, j), such that
• flag ∈ {0, 1}s
• N ∈ {0, 1}n/2−s

• i and j are integers such that (i, j) ̸= (0, 0), and
– a ciphertext, denoted by C, such that C ∈ {0, 1}n,

and returns an n-bit value M .
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Algorithm 1 Encryption Algorithm of Tweakable Even-Mansour

procedure TEM Enc(K, flag, N, i, j,M)
L← (K∥flag∥N)⊕ P (K∥flag∥N)
C ← yi(y+ 1)jL⊕ P (M ⊕ yi(y+ 1)jL)
return C

end procedure

Algorithm 2 Decryption Algorithm of Tweakable Even-Mansour

procedure TEM Dec(K, flag, N, i, j, C)
L← (K∥flag∥N)⊕ P (K∥flag∥N)
M ← yi(y+ 1)jL⊕ P−1(C ⊕ yi(y+ 1)jL)
return M

end procedure

1.1.4 AEAD Mode

The AEADmode of operation consists of two algorithms, the encryption algorithm, denoted byAEAD Enc,
and the decryption algorithm, denoted by AEAD Dec. Let ℓ be the tag size such that 0 ≤ ℓ ≤ n. Let
flagad and flagm be constant values of s bits such that flagad ̸= flagm.

AEAD Enc is specified in Algorithm 5. It uses two algorithms,AEAD CGen specified in Algorithm 3
and AEAD TGen specified in Algorithm 4. AEAD Enc accepts the following inputs,

– a secret key, denoted by K, such that K ∈ {0, 1}n/2,
– a nonce, denoted by N , such that N ∈ {0, 1}n/2−s,
– associated data, denoted by A, such that A ∈ {0, 1}∗, and
– a message, denoted by M , such that M ∈ {0, 1}∗,

and returns either

– the ciphertext, denoted by C, and the tag, denoted by tag, or
– the reject symbol, denoted by ⊥.

Note that AEAD Enc does not accept inputs that do not satisfy the above conditions. For the inputs,
AEAD Enc returns ⊥.

Algorithm 3 Ciphertext Generation Algorithm of AEAD Mode

procedure AEAD CGen(K,N,M)
Parse M∥ pad(|M |) into n-bit blocks (M [1], . . . ,M [m])
for i = 1 to m do
C[i]← TEM Enc(K, flagm, N, 2i− 1, 0,M [i])

end for
C ← C[1]∥ · · · ∥C[m]
return C

end procedure

AEAD Dec is specified in Algorithm 7. It uses two algorithms, AEAD MGen specified in Algo-
rithm 6 and AEAD TGen specified in Algorithm 4. AEAD Dec accepts the following five inputs,

– a secret key, denoted by K, such that K ∈ {0, 1}n/2,
– a nonce, denoted by N , such that N ∈ {0, 1}n/2−s,
– associated data, denoted by A, such that A ∈ {0, 1}∗,
– a ciphertext, denoted by C, such that |C| mod n = 0 and |C| ≥ n, and
– a tag, denoted by tag, such that |tag| = ℓ,

and returns either

– the message, denoted by M , or
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Algorithm 4 Tag Generation Algorithm of AEAD Mode

procedure AEAD TGen(K,N,A,C)
t← 0n

if A ̸= ε then
if |A| mod n = 0 then

Parse A into n-bit blocks (A[1], . . . , A[a])
else

Parse A∥ pad(|A|) into n-bit blocks (A[1], . . . , A[a])
end if
for i = 1 to a− 1 do
t← t⊕TEM Enc(K, flagad, 0

n/2−s, i, 0, A[i])
end for
if |A| mod n = 0 then
t← TEM Enc(K, flagad, 0

n/2−s, a− 1, 1, A[a]⊕ t)
else
t← TEM Enc(K, flagad, 0

n/2−s, a− 1, 2, A[a]⊕ t)
end if

end if
Parse C into n-bit blocks (C[1], . . . , C[m])
for i = 1 to m− 1 do
t← t⊕TEM Enc(K, flagm, N, 2i, 0, C[i])

end for
t← TEM Enc(K, flagm, N, 2m− 1, 1, t⊕ C[m])
tag ← tn−1 · · · tn−ℓ+1tn−ℓ

return tag
end procedure

Algorithm 5 Encryption Algorithm of AEAD Mode

procedure AEAD Enc(K,N,A,M)
C ← AEAD CGen(K,N,M)
tag ← AEAD TGen(K,N,A,C)
return (C, tag)

end procedure
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– the reject symbol, denoted by ⊥.

Note that AEAD Dec does not accept inputs that do not satisfy the above conditions. For the inputs,
AEAD Dec returns ⊥.

Fig. 1, Fig. 2, Fig. 3, and Fig. 4 illustrate the procedures of the AEAD mode with non-empty associated
data and non-empty message, with non-empty associated data and empty message, with empty associated
data and empty message, and with empty associated data and non-empty message, respectively.

Algorithm 6 Message Generation Algorithm of AEAD Mode

procedure AEAD MGen(K,N,C)
Parse C into n-bit blocks (C[1], . . . , C[m])
for i = 1 to m do
M [i]← TEM Dec(K, flagm, N, 2i− 1, 0, C[i])

end for
M ′ ←M [1]∥ · · · ∥M [m]
if M ′ has the form from pad then

Parse M ′ into M and the padding value
else
M ←⊥

end if
return M

end procedure

Algorithm 7 Decryption Algorithm of AEAD Mode

procedure AEAD Dec(K,N,A,C, tag)
tag∗ ← AEAD TGen(K,N,A,C)
if tag = tag∗ then
M∗ ← AEAD MGen(K,N,C)

else
M∗ ←⊥

end if
return M∗

end procedure

1.1.5 MAC Mode

The MAC mode of operation consists of two algorithms, the tag generation algorithm, denoted by
MAC Gen, and the tag verification algorithm, denoted by MAC Verif. Let ℓ be the tag size such
that 0 ≤ ℓ ≤ n. Let flagmac be a constant vale of s bits such that flagmac ̸= flagad and flagmac ̸= flagm.

MAC Gen is specified in Algorithm 8, which accepts the following inputs,

– a secret key, denoted by K, such that K ∈ {0, 1}n/2 and
– a message, denoted by A, such that A ∈ {0, 1}∗,

and returns the tag, denoted by tag. Note that MAC Gen does not accept inputs that do not satisfy
the above conditions. For the inputs, it returns ⊥.

MAC Verif is specified in Algorithm 9, which accepts the following three inputs,

– a secret key, denoted by K, such that K ∈ {0, 1}n/2,
– a message, denoted by A, such that A ∈ {0, 1}∗ and
– a tag, denoted by tag, such that |tag| = ℓ,

and returns either
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Algorithm 8 Tag Generation Algorithm of MAC Mode

procedure MAC Gen(K,A)
t← 0n

if |A| mod n = 0 and |A| > 0 then
Parse A into n-bit blocks (A[1], . . . , A[a])

else
Parse A∥ pad(|A|) into n-bit blocks (A[1], . . . , A[a])

end if
for i = 1 to a− 1 do
t← t⊕TEM Enc(K, flagmac, 0

n/2−s, i, 0, A[i])
end for
if |A| mod n = 0 and |A| > 0 then
t← TEM Enc(K, flagmac, 0

n/2−s, a− 1, 1, A[a]⊕ t)
else
t← TEM Enc(K, flagmac, 0

n/2−s, a− 1, 2, A[a]⊕ t)
end if
tag ← tn−1 · · · tn−ℓ+1tn−ℓ

return tag
end procedure

– the accept symbol, denoted by accept, or
– the reject symbol, denoted by ⊥.

Note that MAC Verif does not accept inputs that do not satisfy the above conditions. For the inputs,
it returns ⊥.

Fig. 5 and Fig. 6 illustrate the procedures of the MAC mode with non-empty message and with empty
message, respectively.

Algorithm 9 Tag Verification Algorithm of MAC Mode

procedure MAC Verif(K,A, tag)
tag∗ ←MAC Gen(K,A, tag)
if tag = tag∗ then
result← accept

else
result←⊥

end if
return result

end procedure

1.2 Parameters

We define the parameters n and s as n = 256 and s = 24. Namely, the size of a nonce is 104 bits and
ℓ = 128. We define the constant values flagad, flagm and flagmac as flagad = 024, flagm = 01∥022, and
flagmac = 10∥022.

We represent GF(2256) with a tower of extensions using irreducible polynomials in the following way.

– GF(28) = GF(2)[x]/(f(x)) where f(x) = x8 + x7 + x5 + x+ 1.
– GF(2256) = GF(28)[y]/(g(y)) where g(y) = y32 + y3 + y2 + x.

We interchangeably think of a point a in GF(2256) as:

– a 256-bit string a255 . . . a1a0,
– a formal polynomial a(x) = (a255x

7+ · · ·+a249x+a248)y
31+ · · ·+(a15x

7+ · · ·+a9x+a8)y+(a7x
7+

· · ·+ a1x+ a0), or

– an integer
∑255

i=0 ai2
i between 0 to 2256 − 1.
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Fig. 1. AEAD Mode with Non-empty Associated Data and Non-empty Message
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Fig. 2. AEAD Mode with Non-empty Associated Data and Empty Message

1.3 Limitations

In the AEAD mode, we restrict the sum of the sizes of an associated data and of a message at most
2104− 1 bits, and the sum of the sizes of an associated data and of a ciphertext accordingly. In the MAC
mode, we restrict the size of a message at most 2104 − 1 bits.

1.4 Primitive

Minalpher-P is a concrete design of permutation P which maps a 256-bit input value to a 256-bit output
value. In this section, we specify the permutation Minalpher-P and the inverse Minalpher-P−1.
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where
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Fig. 3. AEAD Mode with Empty Associated Data and Empty Message
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Fig. 4. AEAD Mode with Empty Associated Data and Non-empty Message
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Fig. 5. MAC Mode with Non-empty Message

1.4.1 Structure of Minalpher-P

1.4.1.1 Specification of Minalpher-P (Forward Procedure)

Minalpher-P has a round function R which consists of an S-function, a T -function, an M -function and
an E-function. Figure 7 shows the structure of the round function R for the forward procedure.

In the forward procedure, first the 256-bit input value IN is copied to a 256-bit value X0 which is
an input to the round function. Let the number of rounds be r + 0.5. Then, the following operations are
performed from i = 1 to r,

Xi ← R(Xi−1, E(i− 1)),

where i denotes the round number and R(X,E(i)) is calculated as follows:

R(X,E(i))←M ◦ T ◦ S(X)⊕ E(i).

Finally, Xr+1 is calculated from Xr as follows,

Xr+1 ← T ◦ S(Xr),
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Fig. 6. MAC Mode with Empty Message
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E(i-1)
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Fig. 7. Structure of Round Functions

and Xr+1 is copied to the 256-bit output value OUT . We call composition T ◦ S 0.5 round. The recom-
mended parameter in Minalpher-P is r = 17, then Minalpher-P has 17.5 rounds.

1.4.1.2 Specification of Minalpher-P−1 (Backward Procedure)

In the backward procedure, first the 256-bit input value IN is copied to a 256-bit value X0 which is an
input to the round function. Then, following operations are performed from i = 1 to r,

Xi ← R(Xi−1,M ◦ E(r − i)),

where the function R is the same function as that of the forward procedure. Finally, Xr+1 is calculated
from Xr as follows,

Xr+1 ← T ◦ S(Xr),

and Xr+1 is copied to the 256-bit output value OUT . Minalpher-P uses r = 17, then Minalpher-P has
17.5 rounds.

1.4.2 State and Mapping

The operation of round function of Minalpher-P is performed on 2 two-dimensional matrices A ∈{
{0, 1}4

}4×8
and B ∈

{
{0, 1}4

}4×8
. Each matrix has 4 × 8 elements and the size of each element is

4 bits. Hereafter, a 4-bit value is called a nibble. The 256-bit input value to Minalpher-P or Minalpher-
P−1 is mapped to two matrices A and B. Let X ∈ {0, 1}256 be the 256-bit input value. In this mapping,
X is split into 64 nibbles as X = X[0]∥X[1]∥ · · · ∥X[63]. Each nibble X[i] is copied into each element of

matrix A ∈
{
{0, 1}4

}4×8
and matrix B ∈

{
{0, 1}4

}4×8
as illustrated in Fig. 8. After calculation of the

round function, the result in matrices A and B is mapped to the 256-bit output value OUT as illustrated
in Fig. 8. In this document, A[i][j] and B[i][j] denote the nibble in row i and column j of A and B,
respectively.

1.4.3 Round Function

The round function consists of the S-function, the T -function and the M -function. Moreover the S-
function consists of SubNibbles (SN), and the T -function consists of ShuffleRows (SR) and SwapMa-
trices (SM), and the M -function consists of XorMatrix (XM) and MixColumns (MC), where SN , SR

and MC are functions from
{
{0, 1}4

}4×8
to
{
{0, 1}4

}4×8
. In the end of the round function, the state is

XORed with the round constant which is calculated from the round number i and the E-function.
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Fig. 8. Mapping between the State and the Input
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Fig. 9. Round Function

Let Xi−1 and Xi be input and output of the round function for round i. Xi−1 consists of two 4 × 8
nibble-wise matrices Ai−1 and Bi−1. Similarly Xi consists of Ai and Bi. Ai and Bi are updated from
Ai−1 and Bi−1 as follows:

ASN
i−1 ← SN(Ai−1), BSN

i−1 ← SN(Bi−1),

ASR
i−1 ← SR(ASN

i−1), BSR
i−1 ← SR−1(BSN

i−1),

ASM
i−1 ← BSR

i−1, BSM
i−1 ← ASR

i−1,

AXM
i−1 ← ASM

i−1 , BXM
i−1 ← ASM

i−1 ⊕BSM
i−1 ,

AMC
i−1 ←MC(AXM

i−1 ), BMC
i−1 ←MC(BXM

i−1 ),

Ai ← AMC
i−1 , Bi ← BMC

i−1 ⊕RCi−1.

In this document, Aop and Bop denote
{
{0, 1}4

}4×8
data after operation op. Fig. 9 shows the structure

of the round function.

1.4.3.1 SubNibbles (SN)
SN substitutes each nibble in the state into another value by using 4-bit S-box s, where s is the permu-
tation from {0x0, . . . , 0xF} to {0x0, . . . , 0xF} defined as follows:
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x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

s(x) 0xB 0x3 0x4 0x1 0x2 0x8 0xC 0xF 0x5 0xD 0xE 0x0 0x6 0x9 0xA 0x7

The S-box of Minalpher-P is an involution S-box. For the element in row i and column j of A and B,
SN performs the following transformation:

ASN [i][j]← s(A[i][j]), 0 ≤ i < 4, 0 ≤ j < 8,

BSN [i][j]← s(B[i][j]), 0 ≤ i < 4, 0 ≤ j < 8.

1.4.3.2 ShuffleRows (SR)

Fig. 10. ShuffleRows

SR shuffles nibble positions within each row. SR consists of 2 different shuffle functions SR1 and
SR2, where SR1 and SR2 are permutations from {0, . . . , 7} to {0, . . . , 7} defined as follows:

i 0 1 2 3 4 5 6 7

SR1(i) 6 7 1 0 2 3 4 5
SR2(i) 4 5 0 1 7 6 2 3

SR−1
1 (i) 3 2 4 5 6 7 0 1

SR−1
2 (i) 2 3 6 7 0 1 5 4

Fig. 10 shows structures of SR1 and SR2. For elements in column j of A, SR performs the following
transformation:

ASR[0][j]← A[0][SR1(j)], 0 ≤ j < 8,

ASR[1][j]← A[1][SR2(j)], 0 ≤ j < 8,

ASR[2][j]← A[2][SR−1
1 (j)], 0 ≤ j < 8,

ASR[3][j]← A[3][SR−1
2 (j)], 0 ≤ j < 8.

For elements in column j of B, SR−1 performs the following transformation:

BSR[0][j]← B[0][SR−1
1 (j)], 0 ≤ j < 8,

BSR[1][j]← B[1][SR−1
2 (j)], 0 ≤ j < 8,

BSR[2][j]← B[2][SR1(j)], 0 ≤ j < 8,

BSR[3][j]← B[3][SR2(j)], 0 ≤ j < 8.

1.4.3.3 SwapMatrices (SM)
SM swaps the matrix Ai for the matrix Bi, namely , SM performs the following transformation:

ASM ← B,

BSM ← A.
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1.4.3.4 XorMatrix (XM)

XM is a linear function, and the matrix B is XORed with the matrix A, namely, XM performs the
following transformation:

AXM ← A,

BXM ← A⊕B.

1.4.3.5 MixColumns (MC)

MC is a linear function within each column. MC is expressed as a multiplication by the following matrix:
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 .

For elements in column j of A and B, MC performs the following transformation:

AMC [0][j]← A[0][j]⊕A[1][j]⊕A[3][j], 0 ≤ j < 8,

AMC [1][j]← A[1][j]⊕A[2][j]⊕A[0][j], 0 ≤ j < 8,

AMC [2][j]← A[2][j]⊕A[3][j]⊕A[1][j], 0 ≤ j < 8,

AMC [3][j]← A[3][j]⊕A[0][j]⊕A[2][j], 0 ≤ j < 8,

and

BMC [0][j]← B[0][j]⊕B[1][j]⊕B[3][j], 0 ≤ j < 8,

BMC [1][j]← B[1][j]⊕B[2][j]⊕B[0][j], 0 ≤ j < 8,

BMC [2][j]← B[2][j]⊕B[3][j]⊕B[1][j], 0 ≤ j < 8,

BMC [3][j]← B[3][j]⊕B[0][j]⊕B[2][j], 0 ≤ j < 8.

1.4.3.6 Round Constant

The round constant RCi−1 is calculated from the round number i and it is a matrix on
{
{0, 1}4

}4×8
.

r ∈ [0, 15] is calculated from i as r = i− 1 mod 16. RCi−1 is generated as follows:

r ⊕ 0 r ⊕ 1 r ⊕ 2 r ⊕ 3 0 0 0 0
r ⊕ 1 r ⊕ 0 r ⊕ 3 r ⊕ 2 0 0 0 0
r ⊕ 2 r ⊕ 3 r ⊕ 0 r ⊕ 1 0 0 0 0
r ⊕ 3 r ⊕ 2 r ⊕ 1 r ⊕ 0 0 0 0 0

2 Security Goals

Before starting the discussion of security goals, we state that users are required to use the public message
number as a nonce and the secret message number is absent.

Minalpher is designed to provide 128-bit security for confidentiality and integrity. In addition to the
basic security, it is designed to provide some level of security against two kinds of misuses: nonce reuse
and unverified plaintext release. We explain these security notions in the following subsection.

2.1 Security Definition

We specify security definitions for privacy and for authenticity of an AEAD scheme Π = (E,D,M,V)
such that

– E : K ×N ×AD ×M→ C × T G is the encryption algorithm of the AEAD mode,
– D : K ×N ×AD × C × T G → RE is the decryption algorithm of the AEAD mode,
– M : K ×Mmac → T Gmac is the tag generation algorithm of the MAC mode,
– V : K ×Mmac × T Gmac →REmac is the tag verification algorithm of the MAC mode,
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where K is a key set, N is a nonce set, AD is an associated data set,M is a message set of the AEAD
mode, C is a ciphertext set, T G is a tag set of the AEAD mode, Mmac is a message set of the MAC
mode, T Gmac is a tag set of the MAC mode, RE is a result set of the decryption algorithm, and REmac

is a result set of the tag verification algorithm.
Hereafter, AD = {0, 1}∗, M = {0, 1}∗, Mmac = {0, 1}∗, C = ({0, 1}n)≥1, T G = {0, 1}ℓ, T Gmac =

{0, 1}ℓ, and REmac = {accept,⊥}, where ({0, 1}n)≥1 is a set of bit strings such that the lengths are
multiples of n and an empty string is not included. RE is specified in each security definition.

We denote by K
R←− K choosing a key K uniformly at random from K.

2.1.1 Privacy

The goal of privacy is that for a key K, EK behaves like “Block-wise Random Function”, denoted by $,
and MK behaves like a random function, denoted by R, where K is chosen uniformly at random from
{0, 1}n/2.

Roughly speaking, for an input, $ defines its output uniformly at random on block-wise, that is, an
output block depends on a nonce, a block number, and a message block but not on other message blocks.
Concretely, $ is defined as follows.

Definition 2 (Block-wise Random Function). Let R1 : N × Z × {0, 1}n → {0, 1}n and R2 : N ×
AD×M→ T G be random functions. For query (N,A,M) ∈ N ×AD×M, a block-wise random function
defines the response as follows.

1. Parse M∥ pad(|M |) into n-bit blocks (M [1], . . . ,M [m]),
2. For each block number i, C[i]←R1(N, i,M [m]),
3. tag ← R2(N,A,M),
4. (C[1]∥ · · · ∥C[m], tag) is the response.

We define “behave like” as the indistinguishability from ($,R). The advantage is defined as follows.

Definition 3 (Privacy). Let $ and R be a block-wise random function and a random function, respec-
tively. The priv-advantage of an adversary A is defined as

AdvprivΠ (A) = Pr[K
R←− K : AEK ,MK ⇒ 1]− Pr[A$,R ⇒ 1] .

We consider two types of adversary A. One is a nonce-respecting adversary, which is not permitted
to make queries with reused nonces. The other is a nonce-reusing adversary, which is permitted to make
the queries.

When A is a nonce-respecting adversary, this definition is the indistinguishability from a pair of

random functions. For confidentiality, we say Π has k-bit priv-security if for a key K
R←− K and any

nonce-respecting adversary, the complexity to distinguish (EK ,MK) from ($,R) is at least 2k.
When A is a nonce-reusing adversary, this definition is the indistinguishability from a pair of a block-

wise random function and a random function. Since ($,R) leaks no information of inputs except for
collisions of message blocks with the same block number, so is (EK ,MK) which is indistinguishable from
($,R). For confidentiality in the nonce reuse setting, we say Π has k-bit block-wise priv-security if for a

key K
R←− K and any nonce-reusing adversary, the complexity to distinguish this scheme from ($,R) is

at least 2k.
We use the following notations interchangeably: k-bit priv-security and 2k priv-security. This rule is

also applied to other security notions.

2.1.2 Authenticity

The goal of authenticity is that for a key K
R←− K, no adversary makes a query to DK or VK such that

accept is returned even with nonce reuse and unverified plaintext release. Unverified plaintext release
(UPR) means that decrypted messages are returned even if the corresponding tags are invalid, that is, in
this setting, RE =M×{accept,⊥}. If the UPR setting is not considered, RE =M∪{⊥}. The advantage
is defined as follows.
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Definition 4 (Authenticity). The auth-advantage of an adversary A is defined as

AdvauthΠ (A) = Pr[K
R←− K : AEK ,DK ,MK ,VK forges],

where RE =M×{accept,⊥} if in the UPR setting, and RE =M∪ {⊥} otherwise. The goal of A is to
make a query to DK or VK such that accept is returned. Note that A cannot make trivial queries listed
bellow.

– A query (N,A,C, tag) to DK which was obtained from EK .
– A query (A, tag) to VK which was obtained from MK .

We consider two types of adversary A. One is a nonce-respecting adversary which is not permitted to
make queries with reused nonces to EK and the other is a nonce-reusing adversary which is permitted to
make the queries.

For integrity, we sayΠ has k-bit auth-security if for a keyK
R←− K and any nonce-respecting adversary,

the complexity to forge a tag is at least 2k without UPR.
For integrity in the nonce reuse and UPR setting, we say Π has k-bit auth-security in this setting

if for a key K
R←− K and any nonce-reusing adversary, the complexity to forge a tag is at least 2k with

UPR.

2.1.3 (Strong) Tweakable Pseudorandom Permutation

Let T be a tweak set. We give definitions of Tweakable PseudoRandom Permutation (TPRP) and of
Strong Tweakable PseudoRandom Permutation (STPRP) for tweakable block-cipher TBC = (TBC E,TBC D),
where TBC E : K×T ×{0, 1}n → {0, 1}n is the encryption function and TBC D : K×T ×{0, 1}n → {0, 1}n
is the decryption function.

Let TRP = (TRP F,TRP B) be a tweakable random permutation which is chosen uniformly at random
from all tweakable permutations of n bits with the tweak set T , where TRP F : T × {0, 1}n → {0, 1}n is
the forward oracle and TRP B : T × {0, 1}n → {0, 1}n is its backward oracle.

Definition 5 (TPRP). The tprp-advantage of a distinguisher D for TBC is defined as

AdvtprpTBC(D) = Pr[K
R←− K : DTBC EK ⇒ 1]− Pr[DTRP F ⇒ 1] .

Definition 6 (STPRP). The stprp-advantage of a distinguisher D for TBC is defined as

AdvstprpTBC (D) = Pr[K
R←− K : DTBC EK ,TBC DK ⇒ 1]− Pr[DTRP F,TRP B ⇒ 1] .

2.2 Basic Security Claims

We make the following claims on the security of Minalpher without nonce reuse and UPR.

Claim (Confidentiality). Minalpher has 128-bit priv-security.

Claim (Integrity). Minalpher has 128-bit auth-security.

These claims are summarized in Table 1.

2.3 Additional Security Claims

In addition to the basic security claims, we claim that Minalpher has the block-wise priv-security for
confidentiality in the nonce reuse setting and the auth-security for integrity in the nonce reuse and UPR
setting.

Claim (Confidentiality in Nonce Reuse Setting). Minalpher has 128-bit block-wise priv-security in the
nonce reuse setting.

Claim (Integrity in Nonce Reuse and UPR Setting). Minalpher has 128-bit auth-security in the nonce
reuse and UPR setting.

16



Table 1. The Intended Numbers of Bits of Security of Minalpher for the Recommended Parameter n = 256 and
ℓ = 128

category the number of bits of security

confidentiality for the plaintext 128

confidentiality for the secret message number N/A

integrity for the plaintext 128

integrity for the associated data 128

integrity for the secret message number N/A

integrity for the public message number 128

2.4 Security Claims of the Mode of Operation and of the Tweakable Even-Mansour

The above claims are based on security claims of the Minalpher mode of operation and of the tweakable
Even-Mansour using Minalpher-P .

We claim the security of the mode of operation as follows.

Claim (Confidentiality). If tweakable Even-Mansour has k-bit tprp-security, then the Minalpher mode
has min{n/2, k}-bit priv-security.

Claim (Integrity). If tweakable Even-Mansour has k-bit stprp-security, then the Minalpher mode has
min{n/2, k, ℓ}-bit auth-security.

Claim (Confidentiality in Nonce Reuse Setting). If tweakable Even-Mansour has k-bit tprp-security, then
the Minalpher mode has min{n/2, k}-bit block-wise priv-security in the nonce reuse setting.

Claim (Integrity in Nonce Reuse and UPR Setting). If tweakable Even-Mansour has k-bit stprp-security,
then the Minalpher mode has min{n/2, k, ℓ}-bit auth-security in the nonce reuse and UPR setting.

We also claim the security of tweakable Even-Mansour with Minalpher-P . Let Zd be the set of integers
from 0 to d− 1 inclusive.

Claim. Tweakable Even-Mansour with Minalpher-P has 128-bit stprp-security, where the tweak set T is
defined as

T = {flagad, flagm, flagmac} × {0, 1}104 × Z2104 × Z3.

The combination of these claims offers the claims given in Subsections 2.2 and 2.3.

3 Security Analysis

The claims in Section 2 are based on security analyses of the Minalpher mode of operation and of
tweakable Even-Mansour using Minalpher-P .

Section 3.1.2 shows the security proof of the Minalpher mode of operation: if tweakable Even-Mansour
with an n-bit permutation has O(2n/2) (s)tprp-security, then the mode of operation has O(2n/2) (block-
wise) priv-security and O(2min{n/2,ℓ}) auth-security.

To claim the security of tweakable Even-Mansour with Minalpher-P , Section 3.1.3 shows that tweak-
able Even-Mansour with an n-bit permutation has O(2n/2) security in the ideal permutation model. This
proof ensures that there are no generic attacks on tweakable Even-Mansour.

Section 3.2 and Section 3.3 show analyses of Minalpher-P . Section 3.2 shows the proof of the minimum
number of active S-boxes for the primitive which is derived theoretically or experimentally. Section 3.3
shows the initial cryptanalysis for Minalpher.

3.1 Security Proofs

For the sake of completeness we provide self-contained proofs for essentially all lemmas and theorems.
Our proofs are based on the code-based game-playing technique [2].
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3.1.1 Preliminaries

Pseudorandom Function. Let G : K ×D → R be a keyed function, where K is a key set.

Definition 7 (PRF). The prf-advantage of a distinguisher D for G is defined as

AdvprfG (D) = Pr
[
K

R←− K : DGK ⇒ 1
]
− Pr

[
DR ⇒ 1

]
,

where R is a function chosen uniformly at random from the set of functions with the same domain and
range as GK .

3.1.2 Security of Mode of Operation

Let TEM = (TEM Enc,TEM Dec) be tweakable Even-Mansour defined in Algorithm 1 and Algo-
rithm 2. In this subsection, we prove the followings.

– If TEM has O(2k) tprp-security, then the Minalpher mode of operation has O(2min{n/2,k}) priv-
security (Theorem 1).

– If TEM has O(2k) stprp-security, then the Minalpher mode of operation has O(2min{n/2,k,ℓ}) auth-
security (Theorem 2).

– If TEM has O(2k) tprp-security, then the Minalpher mode of operation has O(2min{n/2,k}) block-wise
priv-security in the nonce reuse setting (Theorem 3).

– If TEM has O(2k) stprp-security, then the Minalpher mode of operation has O(2min{n/2,k,ℓ}) auth-
security in the nonce reuse and UPR setting (Theorem 4).

Theorem 1 (Confidentiality). Let A be a nonce-respecting adversary. Suppose that the number of
queries made by A is at most q and the number of invocations of TEM induced by the queries of A is at
most σ. Then, for any A, there exists a distinguisher D such that

AdvprivMinalpher(A) ≤ AdvtprpTEM(D) + σ2

2n+1
+

q2

2n
,

where D makes at most σ queries and the running time of D is sum of the running time of A and the
time required to execute the Minalpher mode using an oracle for tweakable Even-Mansour to answer to
the queries made by A.
Theorem 2 (Integrity). Let A be a nonce-respecting adversary. Suppose that the number of queries
made by A is at most q and the number of invocations of TEM induced by the queries of A is at most σ.
Then, for any A, there exists a distinguisher D such that

AdvauthMinalpher(A) ≤ AdvstprpTEM(D) + q

2ℓ
+

σ2

2n+1
+

q2

2n
,

where D makes at most σ queries and the running time of D is sum of the running time of A and the
time required to execute the Minalpher mode using an oracle for tweakable Even-Mansour to answer to
the queries made by A.
Theorem 3 (Confidentiality in Nonce Reuse Setting). Let A be a nonce-reusing adversary. Sup-
pose that the number of queries made by A is at most q and the number of invocations of TEM induced
by the queries of A is at most σ. Then, for any A, there exists a distinguisher D such that

AdvprivMinalpher(A) ≤ AdvtprpTEM(D) + σ2 + q2

2n
,

where D makes at most σ queries and the running time of D is sum of the running time of A and the
time required to execute the Minalpher mode using an oracle for tweakable Even-Mansour to answer to
the queries made by A.
Theorem 4 (Integrity in Nonce Reuse and UPR Setting). Let A be a nonce-reusing adversary.
Suppose that the number of queries made by A is at most q and the number of invocations of TEM induced
by the queries of A is at most σ. Then, for any A, there exists a distinguisher D such that

AdvauthMinalpher(A) ≤ AdvstprpTEM(D) + q

2ℓ
+

σ2 + q2

2n
,

where D makes at most σ queries and the running time of D is sum of the running time of A and the
time required to execute the Minalpher mode using an oracle for tweakable Even-Mansour to answer to
the queries made by A.
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3.1.2.1 Road of Proofs
Let TGenAE be a function chosen uniformly at random from functions with the same domain and range
as AEAD TGen(K, ·, ·, ·). Let TGenMAC be a function chosen uniformly at random from functions with
the same domain and range as MAC Gen(K, ·). Let TRP = (TRP F,TRP B) be a tweakable permutation
chosen uniformly at random from tweakable permutations with the same domain and range as TEM.

We prove Theorems 1, 2, 3, and 4 by the following strategy.

Step 1. We prove the security of Minalpher∗, which is the mode obtained from Minalpher by replacing

– TEM Enc in AEAD CGen with TRP F,

– AEAD TGen with TGenAE, and

– MAC Gen with TGenMAC.

Note that the corresponding changes should also be applied to AEAD Dec and MAC Verif.

Step 2. We prove that

– AEAD TGen using TRP is a PRF (indistinguishable from TGenAE), and

– MAC Gen using TRP is a PRF (indistinguishable from TGenMAC).

Suppose that TEM, AEAD TGen, and MAC Gen are instantiated with TRP. Then, they are inde-
pendent since the set of tweaks for TEM, the set of tweaks for AEAD TGen and the set of tweaks for
MAC Gen are disjoint. Thus, by combining the results of Step 1 and Step 2, the security of the mode
of operation is obtained under the assumption that TEM is (S)TPRP (Theorems 1, 2, 3, and 4).

3.1.2.2 Step 1: Security of Minalpher∗

Lemma 1 (Confidentiality). For any nonce-respecting adversary A,

AdvprivMinalpher∗(A) = 0 .

Proof. Without nonce reuse, a new invocation of TRP gives a new tweak to TRP. ⊓⊔

Lemma 2 (Integrity). For any nonce-respecting adversary A making at most q queries to TGenAE and
TGenMAC in total,

AdvauthMinalpher∗(A) ≤
q

2ℓ
.

Proof. A has to predict an output of TGenAE or TGenMAC to a new input to succeed in forgery. ⊓⊔

Lemma 3 (Confidentiality in Nonce Reuse Setting). For any nonce-reusing adversary A,

AdvprivMinalpher∗(A) ≤
σ2

2n+1
,

where σ is the number of invocations of TRP induced by the queries of A.

Proof. With nonce reuse, message blocks at the same position may be encrypted with the same tweak.
Message blocks at different positions are encrypted with different tweaks. Since TRP is a random permu-
tation on {0, 1}n for each tweak, from PRP/PRF switching lemma [2], this lemma holds. ⊓⊔

Lemma 4 (Integrity in Nonce Reuse and UPR Setting). For any nonce-reusing adversary A
making at most q queries to TGenAE and TGenMAC in total,

AdvauthMinalpher∗(A) ≤
q

2ℓ

in the UPR setting.

Proof. Even with nonce reuse and/or UPR, A has to predict an output of TGenAE or TGenMAC to a new
input to succeed in forgery. ⊓⊔
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3.1.2.3 Step 2: Security of AEAD TGen and of MAC Gen

Let GAE be the tag generation function AEAD TGen instantiated with TRP.

Lemma 5. For any distinguisher D,

AdvprfGAE
(D) ≤ σ2

2n+1
+

q2

2n
,

where q is the number of the queries made by D and σ is the number of invocations of TRP induced by
the queries.

Proof. This proof utilizes the game playing technique [2].
Without loss of generality, assume that D makes no repeated queries. The game Gm0 in Fig. 11

implements GAE. Thus,
Pr
[
DGAE ⇒ 1

]
= Pr

[
DGm0 ⇒ 1

]
.

The game Gm1 in Fig. 12 is obtained simply by replacing TRP F in Gm0 with ρ chosen uniformly
at random from functions with the same domain and range as TRP F. From the PRP/PRF switching
lemma [2],

Pr
[
DGm0 ⇒ 1

]
− Pr

[
DGm1 ⇒ 1

]
≤ σ2

2n+1
.

The difference between Gm2 in Fig. 13 and Gm1 is located only on the line 118. In Gm2, t is chosen
uniformly at random on the line 118. From Lemma 6,

Pr
[
DGm1 ⇒ 1

]
− Pr

[
DGm2 ⇒ 1

]
≤ q2

2n
.

On the other hand, since D makes no repeated queries,

Pr
[
DGm2 ⇒ 1

]
= Pr

[
DR ⇒ 1

]
.

This completes the proof. ⊓⊔

Lemma 6. For Gm1 in Fig. 12 and Gm2 in Fig.13,

Pr
[
DGm1 ⇒ 1

]
− Pr

[
DGm2 ⇒ 1

]
≤ q2

2n
,

where q is the number of the queries by D.

Proof. Gm1 and Gm2 are equivalent if the values of t obtained on the line 117 are always new. Thus, the
probability of a collision of the values of t obtained on the line 117 in Gm1 is evaluated.

Let (Nl, Al, Cl) be the l-th query by D. In this proof, the variables in GAE corresponding to the l-th
query is also accompanied with the subscript l. Let t(u) be the value of t just after the line u.

Let (Nl, Al, Cl) and (Nl′ , Al′ , Cl′) be distinct queries. If the corresponding tweaks used on the line 118
for ρ are distinct, then the outputs of GAE are independent of each other. Thus, it is sufficient to consider
the case where Nl = Nl′ and ml = ml′ , which is assumed in the remaining part. Notice that ml and ml′

are the numbers of blocks produced from Cl and Cl′ , respectively.

1. Suppose that Cl = Cl′ . Then, Al ̸= Al′ since D makes no repeated queries.
(a) Suppose that al ̸= al′ .

i. Suppose that Al ̸= ε and Al′ ̸= ε. Then, t
(112)
l and t

(112)
l′ are chosen uniformly at random and

independent of each other. Thus, Pr
[
t
(117)
l = t

(117)
l′

]
= 1/2n.

ii. Suppose that Al ̸= ε and Al′ = ε. Then, t
(112)
l is chosen uniformly at random. Thus,

Pr
[
t
(117)
l = t

(117)
l′

]
= 1/2n.

(b) Suppose that al = al′(= a).

i. Suppose that t
(112)
l and t

(112)
l′ are produced by ρ with the different tweaks, that is these values

are chosen uniformly at random and independent of each other. Thus, Pr
[
t
(117)
l = t

(117)
l′

]
=

1/2n.
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ii. Suppose that t
(112)
l and t

(112)
l′ are produced by ρ with the same tweak.

A. Suppose that Al[i] = Al′ [i] for 1 ≤ i ≤ a − 1 and Al[a] ̸= Al′ [a]. Then, t
(106)
l ̸= t

(106)
l′ .

Thus, since t
(112)
l and t

(112)
l′ are chosen uniformly at random and independent of each

other, Pr
[
t
(117)
l = t

(117)
l′

]
= Pr

[
t
(112)
l = t

(112)
l′

]
= 1/2n.

B. Suppose that Al[i] ̸= Al′ [i] for some i such that 1 ≤ i ≤ a−1. Then, since t
(106)
l and t

(106)
l′

are chosen uniformly at random and independent of each other, Pr
[
t
(106)
l = t

(106)
l′

]
=

1/2n. Thus,

Pr
[
t
(117)
l = t

(117)
l′

]
= Pr

[
t
(112)
l = t

(112)
l′

]
=

1

2n
+

(
1− 1

2n

)
· 1

2n
≤ 1

2n−1
.

2. Suppose that Cl ̸= Cl′ . Let ml = ml′ = m.

(a) Suppose that Cl[i] = Cl′ [i] for 1 ≤ i ≤ m−1 and Cl[m] ̸= Cl′ [m]. IfAl = Al′ , then Pr
[
t
(117)
l = t

(117)
l′

]
=

0. Otherwise, Pr
[
t
(117)
l = t

(117)
l′

]
≤ 1/2n−1.

(b) Suppose that Cl[i] ̸= Cl′ [i] for some i such that 1 ≤ i ≤ m − 1. Then, since t
(117)
l and t

(117)
l′ are

chosen uniformly at random and independent of each other, Pr
[
t
(117)
l = t

(117)
l′

]
= 1/2n.

The analyses given above shows that the probability of collision of the values of t for a pair of queries
is at most 1/2n−1. Since the number of the queries is at most q, the total probability of the collisions is
at most

(
q
2

)
1

2n−1
≤ q2

2n
.

This completes the proof. ⊓⊔

Let GMAC be the tag generation function MAC Gen instantiated with TRP.

Lemma 7. For any distinguisher D,

AdvprfGMAC
(D) ≤ σ2

2n+1
+

q2

2n+1
,

where q is the number of the queries made by D and σ is the number of invocations of TRP induced by
the queries.

Proof. Omitted since it is similar to the proof of Lemma 5. ⊓⊔
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GAE(N,A,C):

100: t← 0n

101: if A ̸= ε then
102: Pad and Partition A into (A[1], . . . , A[a])
103: for i = 1 to a− 1 do
104: ZA[i]← TRP F(flagad, 0

n/2−s, i, 0, A[i])
105: end for
106: t← ZA[1]⊕ · · · ⊕ ZA[a− 1]⊕A[a]
107: if |A| mod n = 0 then
108: t← TRP F(flagad, 0

n/2−s, a− 1, 1, t)
109: else
110: t← TRP F(flagad, 0

n/2−s, a− 1, 2, t)
111: end if
112: end if
113: Partition C into (C[1], . . . , C[m])
114: for i = 1 to m− 1 do
115: ZC [i]← TRP F(flagm, N, 2i, 0, C[i])
116: end for
117: t← t⊕ ZC [1]⊕ · · · ⊕ ZC [m− 1]⊕ C[m]
118: t← TRP F(flagm, N, 2m− 1, 1, t)
119: return t

Fig. 11. Game Gm0

GAE(N,A,C):

100: t← 0n

101: if A ̸= ε then
102: Pad and Partition A into (A[1], . . . , A[a])
103: for i = 1 to a− 1 do
104: ZA[i]← ρ(flagad, 0

n/2−s, i, 0, A[i])
105: end for
106: t← ZA[1]⊕ · · · ⊕ ZA[a− 1]⊕A[a]
107: if |A| mod n = 0 then
108: t← ρ(flagad, 0

n/2−s, a− 1, 1, t)
109: else
110: t← ρ(flagad, 0

n/2−s, a− 1, 2, t)
111: end if
112: end if
113: Partition C into (C[1], . . . , C[m])
114: for i = 1 to m− 1 do
115: ZC [i]← ρ(flagm, N, 2i, 0, C[i])
116: end for
117: t← t⊕ ZC [1]⊕ · · · ⊕ ZC [m− 1]⊕ C[m]
118: t← ρ(flagm, N, 2m− 1, 1, t)
119: return t

Fig. 12. Game Gm1
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GAE(N,A,C):

100: t← 0n

101: if A ̸= ε then
102: Pad and Partition A into (A[1], . . . , A[a])
103: for i = 1 to a− 1 do
104: ZA[i]← ρ(flagad, 0

n/2−s, i, 0, A[i])
105: end for
106: t← ZA[1]⊕ · · · ⊕ ZA[a− 1]⊕A[a]
107: if |A| mod n = 0 then
108: t← ρ(flagad, 0

n/2−s, a− 1, 1, t)
109: else
110: t← ρ(flagad, 0

n/2−s, a− 1, 2, t)
111: end if
112: end if
113: Partition C into (C[1], . . . , C[m])
114: for i = 1 to m− 1 do
115: ZC [i]← ρ(flagm, N, 2i, 0, C[i])
116: end for
117: t← t⊕ ZC [1]⊕ · · · ⊕ ZC [m− 1]⊕ C[m]

118: t
R← {0, 1}n

119: return t

Fig. 13. Game Gm2

3.1.3 (S)TPRP-Security for Tweakable Even-Mansour in the Ideal Permutation Model

Let P be a public permutation chosen uniformly at random from permutations of n bits. Let P−1 be its
inverse oracle. (P,P−1) and TRP are independent of each other.

In this part, we discuss the security of TEM in the ideal permutation model. Let TEM = (TEM Enc,TEM Dec)
be TEM instantiated with P instead of P . We show that TEM has O(2n/2) (s)tprp-security.

Since P and P−1 are public, in the (S)TPRP game, a distinguisher D has oracle access to P and P−1.
The (s)tprp-advantages of D are defined as follows:

AdvtprpTEM(D) = Pr
[
K

R←− K : DTEM EncK ,P,P−1

⇒ 1
]
− Pr

[
DTRP F,P,P−1

⇒ 1
]

,

AdvstprpTEM (D) = Pr
[
K

R←− K : DTEM EncK ,TEM DecK ,P,P−1

⇒ 1
]
− Pr

[
DTRP F,TRP B,P,P−1

⇒ 1
]

.

Theorem 5. Let n and s be positive integers such that n/2−s ≥ 1 and n is even. Let d1 and d2 be positive
integers. Let (flag, N, i, j) be a tweak of TEM such that (flag, N, i, j) ∈ {0, 1}s × {0, 1}n/2−s × Zd1 × Zd2

and (i, j) ̸= (0, 0). Let y ∈ GF(2n) such that yi(y+ 1)j ̸= 1 and yi(y+ 1)j ̸= yi
′
(y+ 1)j

′
for any distinct

(i, j) and (i′, j′) in Zd1 × Zd2 \ {(0, 0)}. Then, for any distinguisher D,

AdvstprpTEM (D) ≤ σ2

2n−1
+

σ

2n/2
.

where σ is the total number of invocations of P and P−1 induced by queries made by D.

Proof. The proof also utilizes the game playing technique [2].
Distinguisher D has four oracles: E , E−1, π and π−1. E corresponds to TEM EncK or TRP F. E−1

corresponds to TEM DecK or TRP B. π corresponds to P. π−1 corresponds to P−1. Without loss of
generality, we assume that D is deterministic. We also assume the followings for oracle queries made by
D.

– If D has already obtained the tuple (Ti,Mi, Ci) of a tweak, a plaintext and a ciphertext for E , then
D does not ask (Ti,Mi) to E nor (Ti, Ci) to E−1.

– If D has already obtained the tuple (Ti,Mi, Ci) of a tweak, a plaintext and a ciphertext for E−1, then
D does not ask (Ti,Mi) to E nor (Ti, Ci) to E−1.
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– If D has already obtained a pair (Xi, Yi) of an input and an output for π, then D does not ask Xi to
π nor Yi to π−1.

– If D has already obtained a pair (Xi, Yi) of an input and an output for π−1, then D does not ask Xi

to π nor Yi to π−1.

To simplify the notation, T = (flag, N, i, j) is denoted by (N̄ , (i, j)), where N̄ = flag∥N .
For the game G0 in Fig. 14,

Pr
[
DG0 ⇒ 1

]
= Pr

[
K

R←− K : DTRP F,TRP B,P,P−1

⇒ 1
]

.

In the game G1 in Fig. 15, E , E−1, π, and π−1 select their outputs uniformly at random. Thus, from
the PRP/PRF switching lemma [2],

Pr
[
DG1 ⇒ 1

]
− Pr

[
DG0 ⇒ 1

]
≤ σ(σ − 1)

2n+1
≤ σ2

2n+1
.

The game G2 in Fig. 16 is obtained from G1 by adding some parts for TEM EncK and TEM DecK ,
which do not affect the outputs of oracles. Thus,

Pr
[
DG2 ⇒ 1

]
= Pr

[
DG1 ⇒ 1

]
.

In the game G3 in Fig. 17, Y M , XC and Y N are chosen uniformly at random instead of C, M and
L. This change does not affect the behavior of oracles. Thus,

Pr
[
DG3 ⇒ 1

]
= Pr

[
DG2 ⇒ 1

]
.

In the game G4 in Fig. 18, ϖ and ϖ−1 are introduced, and uniform and random choices in E , E−1

and compL are implemented by calls to them. There is no other difference between G3 and G4. Thus,

Pr
[
DG4 ⇒ 1

]
= Pr

[
DG3 ⇒ 1

]
.

In the game G5 in Fig. 19, ϖ, and ϖ−1 implements P, and P−1, respectively. In G4, outputs of ϖ
and ϖ−1 are chosen uniformly at random and these are not consistent, while in G5, ϖ is a random
permutation and ϖ−1 is its inverse. Thus, in G4, the following queries yield the difference between G4
and G5.

– Repeated queries:
• Y ← ϖ(X) then Y ∗ ← ϖ(X) where Y ∗ is independent of Y .
• X ← ϖ−1(Y ) then X∗ ← ϖ−1(Y ) where X∗ is independent of X.
• Y ← ϖ(X) then X∗ ← ϖ−1(Y ) where X∗ is independent of X.
• X ← ϖ−1(Y ) then Y ∗ ← ϖ(X) where Y ∗ is independent of Y .

– Queries yielding collisions:
• Y ← ϖ(X) then Y ← ϖ(X∗) where X ̸= X∗.
• X ← ϖ−1(Y ) then X ← ϖ−1(Y ∗) where Y ̸= Y ∗.
• Y ← ϖ(X) then X ← ϖ−1(Y ∗) where Y ̸= Y ∗.
• X ← ϖ−1(Y ) then Y ← ϖ(X∗) where X ̸= X∗.

Thus, G4 and G5 are equivalent unless collisions occur

– among XM , XC , XN , XF and XB , and
– among Y M , Y C , Y N , Y F and Y B

in both games. Let Bad4 be the collision event in G4. From Lemma 8 presented after this proof,

Pr
[
DG5 ⇒ 1

]
− Pr

[
DG4 ⇒ 1

]
≤ Pr[Bad4]

≤ 3σ2

2n+1
+

σ

2n/2
.

In the game G6 in Fig. 20, ϖ and ϖ−1 are removed, and π and π−1 take their roles. compL does not
check the reuse of N̄ . These changes do not affect the behavior of oracles. Thus,

Pr
[
DG6 ⇒ 1

]
= Pr

[
DG5 ⇒ 1

]
.
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In G6, E , E−1, π, and π−1 implement TEM EncK , TEM DecK , P, and P−1, respectively. Namely,

Pr
[
DG6 ⇒ 1

]
= Pr

[
K

R←− K : DTEM EncK ,TEM DecK ,P,P−1

⇒ 1
]

.

From the discussions above,

Pr
[
DG6 ⇒ 1

]
− Pr

[
DG0 ⇒ 1

]
≤
(
Pr
[
DG5 ⇒ 1

]
− Pr

[
DG4 ⇒ 1

])
+
(
Pr
[
DG1 ⇒ 1

]
− Pr

[
DG0 ⇒ 1

])
≤ σ2

2n−1
+

σ

2n/2
.

This completes the proof. ⊓⊔

Lemma 8.

Pr[Bad4] ≤
3σ2

2n+1
+

σ

2n/2
.

Proof. Let Bad2 be the collision event in G2. Since G4 is equivalent to G2, Pr[Bad2] = Pr[Bad4]. Thus in
the following, we evaluate the probability of Pr[Bad2].

In this proof, we consider the following event Perm.

– E works as a tweakable permutation in accordance with E−1, and
– π works as a permutation in accordance with π−1.

We thus have

Pr[Bad2] = Pr[Bad2 ∧ Perm] + Pr[Bad2 ∧ ¬Perm]

≤ Pr[Bad2|Perm] + Pr[¬Perm] .

First we evaluate the probability of Pr[¬Perm]. From the PRP/PRF switching lemma [2], we have

Pr[¬Perm] ≤ σ2

2n+1
.

Next, we evaluate the probability of Pr[Bad|Perm]. In the following, we assume that Perm occurs.
In this evaluation, the l-th query of D is accompanied with the subscript l. Notice that it is a consec-

utive number for all the oracles. Let idx(O) be the set of the numbers assigned to queries to the oracle O
made by D. If O ̸= O′, then idx(O) ∩ idx(O′) is an empty set.

The variables related to the l-th query of D is also accompanied with the subscript l. For example,
variables related to the query (Tl,Ml) of D to E is denoted by XM

l , Y M
l , XN

l , Y N
l , and so on.

The probability of collisions is evaluated in the following part. Since D is assumed to be deterministic,
the probability of collisions is evaluated in the setting where the oracles perform all the computation
except for choices of replies (C,M, Y F , XB) to D after the termination of D. Thus, secret key K and
values L are chosen uniformly at random after the termination of D. Then, all the remaining computation
is performed for each query and the corresponding reply generated during the interaction with D.

Probabilities that XM
l collides with XM

l′ , XC
l′ , X

N
l′ , X

F
l′ and XB

l′ .

1. Pr
[
XM

l = XM
l′

]
≤ 2−n for l ̸= l′ is confirmed as follows. Notice that

XM
l = XM

l′

Ml ⊕ yil(y+ 1)jlLl = Ml′ ⊕ yil′ (y+ 1)jl′Ll′

yil(y+ 1)jlLl ⊕ yil′ (y+ 1)jl′Ll′ = Ml ⊕Ml′ .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL.
– Suppose that (il, jl) = (il′ , jl′). Then yil(y + 1)jlLl = yil′ (y + 1)jl′Ll′ . On the other hand,

Ml ̸= Ml′ from the assumption given at the beginning of the proof of Theorem 5 (D makes
no repeated queries). Thus, in this case,

Pr
[
XM

l = XM
l′
]
= 0 .
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– Suppose that (il, jl) ̸= (il′ , jl′). Then, since Ll is chosen uniformly at random,

Pr
[
XM

l = XM
l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Then, Ll and Ll′ are chosen uniformly at random and independent of
each other. Thus,

Pr
[
XM

l = XM
l′
]
= 2−n .

2. Pr
[
XM

l = XC
l′

]
≤ 2−n is confirmed as follows. Notice that

XM
l = XC

l′

Ml ⊕ yil(y+ 1)jlLl = Ml′ ⊕ yil′ (y+ 1)jl′Ll′

yil(y+ 1)jlLl ⊕ yil′ (y+ 1)jl′Ll′ = Ml ⊕Ml′ .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL.
– Suppose that (il, jl) = (il′ , jl′). Then, y

il(y + 1)jlLl = yil′ (y + 1)jl′Ll′ . On the other hand,
Ml ̸= Ml′ from the assumptions for Perm and for the proof of Theorem 5 (given at the
beginning). Thus,

Pr
[
XM

l = XC
l′
]
= 0 .

– Suppose that (il, jl) ̸= (il′ , jl′). Then, since Ll is chosen uniformly at random,

Pr
[
XM

l = XC
l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Then Ll and Ll′ are chosen uniformly at random and independent of
each other. Thus,

Pr
[
XM

l = XC
l′
]
= 2−n .

3. Pr
[
XM

l = XN
l′

]
= 2−n since

XM
l = XN

l′

Ml ⊕ yil(y+ 1)jlLl = K∥N̄l′

yil(y+ 1)jlLl = K∥N̄l′ ⊕Ml

and Ll is chosen uniformly at random and independent of K.
4. Pr

[
XM

l = XF
l′

]
= 2−n since

XM
l = XF

l′

Ml ⊕ yil(y+ 1)jlLl = XF
l′

yil(y+ 1)jlLl = XF
l′ ⊕Ml

and Ll is chosen uniformly at random.
5. Pr

[
XM

l = XB
l′

]
= 2−n since

XM
l = XB

l′

Ml ⊕ yil(y+ 1)jlLl = XB
l′

yil(y+ 1)jlLl = XB
l′ ⊕Ml

and Ll is chosen uniformly at random.

Probabilities that XC
l collides with XC

l′ , X
N
l′ , X

F
l′ and XB

l′ .

1. Pr
[
XC

l = XC
l′

]
≤ 2−n for l ̸= l′ is confirmed as follows. Notice that

XC
l = XC

l′

Ml ⊕ yil(y+ 1)jlLl = Ml′ ⊕ yil′ (y+ 1)jl′Ll′

yil(y+ 1)jlLl ⊕ yil′ (y+ 1)jl′Ll′ = Ml ⊕Ml′ .
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(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL.
– Suppose that (il, jl) = (il′ , jl′). Then yil(y + 1)jlLl = yil′ (y + 1)jl′Ll′ . On the other hand,

Ml ̸= Ml′ from the assumptions for Perm and for the proof of Theorem 5. Thus,

Pr
[
XC

l = XC
l′
]
= 0 .

– Suppose that (il, jl) ̸= (il′ , jl′). Then, since Ll is chosen uniformly at random,

Pr
[
XC

l = XC
l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Then, Ll and Ll′ are chosen uniformly at random and independent of
each other. Thus,

Pr
[
XC

l = XC
l′
]
= 2−n .

2. Pr
[
XC

l = XN
l′

]
= 2−n since

XC
l = XN

l′

Ml ⊕ yil(y+ 1)jlLl = K∥N̄l′

yil(y+ 1)jlLl = K∥N̄l′ ⊕Ml

and Ll is chosen uniformly at random and independent of K.
3. Pr

[
XC

l = XF
l′

]
= 2−n since

XC
l = XF

l′

Ml ⊕ yil(y+ 1)jlLl = XF
l′

yil(y+ 1)jlLl = XF
l′ ⊕Ml

and Ll is chosen uniformly at random.
4. Pr

[
XC

l = XB
l′

]
= 2−n since

XC
l = XB

l′

Ml ⊕ yil(y+ 1)jlLl = XB
l′

yil(y+ 1)jlLl = XB
l′ ⊕Ml

and Ll is chosen uniformly at random.

Probabilities that XN
l collides with XN

l′ , X
F
l′ and XB

l′ .

1. Pr
[
XN

l = XN
l′

]
= 0 if N̄l ̸= N̄l′ . If N̄l = N̄l′ , then the repeated queries are avoided due to the list

NL.
2. Pr[XN

l = XF
l′ ] ≤ 2−n/2 where XN

l = K∥N̄l, since K ∈ {0, 1}n/2 is chosen uniformly at random, and

Pr
[
XN

l = XF
l′
]
=

{
2−n/2 ((The lower n/2 bits of XF

l′ ) = N̄l)

0 ((The lower n/2 bits of XF
l′ ) ̸= N̄l) .

3. Pr[XN
l = XB

l′ ] ≤ 2−n/2 where XN
l = K∥N̄l, since K ∈ {0, 1}n/2 is chosen uniformly at random, and

Pr
[
XN

l = XB
l′
]
=

{
2−n/2 ((The lower n/2 bits of XB

l′ ) = N̄l)

0 ((The lower n/2 bits of XB
l′ ) ̸= N̄l) .

Probabilities of collisions among XF
l and XB

l′ .

1. Pr[XF
l = XF

l′ ] = 0, Pr[XF
l = XB

l′ ] = 0, and Pr[XB
l = XB

l′ ] = 0 from the assumption given at the
beginning of the proof of Theorem 5.

Probabilities that Y M
l collides with Y M

l′ , Y C
l′ , Y

N
l′ , Y F

l′ , and Y B
l′ .
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1. Pr
[
Y M
l = Y M

l′

]
≤ 2−n for l ̸= l′ is confirmed as follows. Notice that

Y M
l = Y M

l′

Cl ⊕ yil(y+ 1)jlLl = Cl′ ⊕ yil′ (y+ 1)jl′Ll′

yil(y+ 1)jlLl ⊕ yil′ (y+ 1)jl′Ll′ = Cl ⊕ Cl′ .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL.
– Suppose that (il, jl) = (il′ , jl′). Then, y

il(y + 1)jlLl = yil′ (y + 1)jl′Ll′ . On the other hand,
Cl ̸= Cl′ from the assumptions for Perm and for the proof of Theorem 5. Thus,

Pr
[
Y M
l = Y M

l′
]
= 0 .

– Suppose that (il, jl) ̸= (il′ , jl′). Then since Ll is chosen uniformly at random,

Pr
[
Y M
l = Y M

l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Ll and Ll′ are chosen uniformly at random and independent of each
other. Thus,

Pr
[
Y M
l = Y M

l′
]
= 2−n .

2. Pr
[
Y M
l = Y C

l′

]
≤ 2−n is confirmed as follows. Notice that

Y M
l = Y C

l′

Cl ⊕ yil(y+ 1)jlLl = Cl′ ⊕ yil′ (y+ 1)jl′Ll′

yil(y+ 1)jlLl ⊕ yil′ (y+ 1)jl′Ll′ = Cl ⊕ Cl′ .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL.
– Suppose that (il, jl) = (il′ , jl′). Then, y

il(y + 1)jlLl = yil′ (y + 1)jl′Ll′ . On the other hand,
Cl ̸= Cl′ from the assumptions for Perm and for the proof of Theorem 5. Thus,

Pr
[
Y M
l = Y C

l′
]
= 0 .

– Suppose that (il, jl) ̸= (il′ , jl′). Then, since Ll is chosen uniformly at random,

Pr
[
Y M
l = Y C

l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Since Ll and Ll′ are chosen uniformly at random and independent of
each other,

Pr
[
Y M
l = Y C

l′
]
= 2−n .

3. Pr
[
Y M
l = Y N

l′

]
≤ 2−n is confirmed as follows. Notice that

Y M
l = Y N

l′

Cl ⊕ yil(y+ 1)jlLl = Ll′ ⊕ (K∥N̄l′)

Ll′ ⊕ yil(y+ 1)jlLl = Cl ⊕ (K∥N̄l′) .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL. Since yil(y+1)jl ̸= 1 and Ll is chosen
uniformly at random,

Pr
[
Y M
l = Y N

l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Since Ll and Ll′ are chosen uniformly at random and independent of
each other,

Pr
[
Y M
l = Y N

l′
]
= 2−n .

4. Pr
[
Y M
l = Y F

l′

]
= 2−n since

Y M
l = Y F

l′

Cl ⊕ yil(y+ 1)jlLl = Y F
l′

yil(y+ 1)jlLl = Y F
l′ ⊕ Cl

and Ll is chosen uniformly at random.
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5. Pr
[
Y M
l = Y B

l′

]
= 2−n since

Y M
l = Y B

l′

Cl ⊕ yil(y+ 1)jlLl = Y B
l′

yil(y+ 1)jlLl = Y B
l′ ⊕ Cl

and Ll is chosen uniformly at random.

Probabilities that Y C
l collides with Y C

l′ , Y
N
l′ , Y F

l′ , and Y B
l′ .

1. Pr
[
Y C
l = Y C

l′

]
≤ 2−n for l ̸= l′ is confirmed as follows. Notice that

Y C
l = Y C

l′

Cl ⊕ yil(y+ 1)jlLl = Cl′ ⊕ yil′ (y+ 1)jl′Ll′

yil(y+ 1)jlLl ⊕ yil′ (y+ 1)jl′Ll′ = Cl ⊕ Cl′ .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL.
– Suppose that (il, jl) = (il′ , jl′). Then, y

il(y + 1)jlLl = yil′ (y + 1)jl′Ll′ . On the other hand,
Cl ̸= Cl′ from the assumption of the proof of Theorem 5. Thus,

Pr
[
Y C
l = Y C

l′
]
= 0 .

– Suppose that (il, jl) ̸= (il′ , jl′). Then since Ll is chosen uniformly at random,

Pr
[
Y C
l = Y C

l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Then, Ll and Ll′ are chosen uniformly at random and independent of
each other. Thus,

Pr
[
Y C
l = Y C

l′
]
= 2−n .

2. Pr
[
Y C
l = Y N

l′

]
≤ 2−n is confirmed as follows. Notice that

Y C
l = Y N

l′

Cl ⊕ yil(y+ 1)jlLl = Ll′ ⊕ (K∥N̄l′)

Ll′ ⊕ yil(y+ 1)jlLl = Cl ⊕ (K∥N̄l′) .

(a) Suppose that N̄l = N̄l′ . Then, Ll = Ll′ due to the list NL. Since yil(y+1)jl ̸= 1 and Ll is chosen
uniformly at random, and independent of K,

Pr
[
Y C
l = Y N

l′
]
= 2−n .

(b) Suppose that N̄l ̸= N̄l′ . Since Ll and Ll′ are chosen uniformly at random and independent of
each other, and independent of K,

Pr
[
Y C
l = Y N

l′
]
= 2−n .

3. Pr
[
Y C
l = Y F

l′

]
= 2−n since

Y C
l = Y F

l′

Cl ⊕ yil(y+ 1)jlLl = Y F
l′

yil(y+ 1)jlLl = Y F
l′ ⊕ Cl

and Ll is chosen uniformly at random.
4. Pr

[
Y C
l = Y B

l′

]
= 2−n since

Y C
l = Y B

l′

Cl ⊕ yil(y+ 1)jlLl = Y B
l′

yil(y+ 1)jlLl = Y B
l′ ⊕ Cl

and Ll is chosen uniformly at random.
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Probabilities that Y N
l collides with Y N

l′ , Y F
l′ , and Y B

l′ .

1. Pr
[
Y N
l = Y N

l′

]
≤ 2−n for l ̸= l′ is confirmed as follows. Notice that

Y N
l = Y N

l′

Ll ⊕ (K∥N̄l) = Ll′ ⊕ (K∥N̄l′)

Ll ⊕ Ll′ = (K∥N̄l)⊕ (K∥N̄l′) .

Nl ̸= Nl′ due to the list NL, and thereby Ll and Ll′ are chosen uniformly at random and independent
of each other. Thus,

Pr
[
Y N
l = Y N

l′
]
= 2−n .

2. Pr
[
Y N
l = Y F

l′

]
= 2−n since

Y N
l = Y F

l′

Ll ⊕ (K∥N̄l) = Y F
l′

Ll = Y F
l′ ⊕ (K∥N̄l),

Ll is chosen uniformly at random and independent of K.

3. Pr
[
Y N
l = Y B

l′

]
= 2−n since

Y N
l = Y B

l′

Ll ⊕ (K∥N̄l) = Y B
l′

Ll = Y B
l′ ⊕ (K∥N̄l)

and Ll is chosen uniformly at random and independent of K.

Probabilities of collision among Y F
l and Y B

l′ .

1. Pr[Y F
l = Y F

l′ ] = 0, Pr[Y F
l = Y B

l′ ] = 0, and Pr[Y B
l = Y B

l′ ] = 0 from the assumption given at the
beginning of the proof of Theorem 5.

We thus have

Pr[Bad2|Perm] ≤ 2

(
σ
2

)
1

2n
+ σ · 1

2n/2
≤ σ2

2n
+

σ

2n/2
.

The first term of the bound is from the collision probabilities which are not from the analyses of random-
ness of K. The last term of the bound is from the collision probabilities which are from the analyses of
randomness of K.

This completes the proof.

⊓⊔

E(T,M):

100: return TRP F(T,M)

E−1(T,C):

150: return TRP B(T,C)

π(X):

500: return P(X)

π−1(Y ):

550: return P−1(Y )

Fig. 14. Game G0
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E(T,M):

100: C
R← {0, 1}n

101: return C

E−1(T,C):

150: M
R← {0, 1}n

151: return M

π(X):

500: Y
R← {0, 1}n

501: return Y

π−1(Y ):

550: X
R← {0, 1}n

551: return X

Fig. 15. Game G1

Initialization:

0: NL is an empty list.

E(T,M):

100: Parse T into (N̄ , (i, j))
101: L← compL(N̄)
102: XM ←M ⊕ yi(y+ 1)jL

103: C
R← {0, 1}n

104: YM ← C ⊕ yi(y+ 1)jL
105: return C

E−1(T,C):

150: Parse T into (N̄ , (i, j))
151: L← compL(N̄)
152: Y C ← C ⊕ yi(y+ 1)jL

153: M
R← {0, 1}n

154: XC ←M ⊕ yi(y+ 1)jL
155: return M

function compL(N̄):

200: if ∃(N̄ , L′) ∈ NL then
201: L← L′

202: else
203: XN ← K∥N̄
204: L

R← {0, 1}n
205: Y N ← L⊕XN

206: NL← NL ∪ {(N̄ , L)}
207: end if
208: return L

π(XF ):

500: Y F R← {0, 1}n
501: return Y F

π−1(Y B):

550: XB R← {0, 1}n
551: return XB

Fig. 16. Game G2. The superscripts M , C , N , F , and B to X and Y are attached for ease of reference in Lemma 8.
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Initialization:

0: NL is an empty list.

E(T,M):

100: Parse T into (N̄ , (i, j))
101: L← compL(N̄)
102: XM ←M ⊕ yi(y+ 1)jL

103: YM R← {0, 1}n
104: C ← YM ⊕ yi(y+ 1)jL
105: return C

E−1(T,C):

150: Parse T into (N̄ , (i, j))
151: L← compL(N̄)
152: Y C ← C ⊕ yi(y+ 1)jL

153: XC R← {0, 1}n
154: M ← XC ⊕ yi(y+ 1)jL
155: return M

function compL(N̄):

200: if ∃(N̄ , L′) ∈ NL then
201: L← L′

202: else
203: XN ← K∥N̄
204: Y N R← {0, 1}n
205: L← XN ⊕ Y N

206: NL← NL ∪ {(N̄ , L)}
207: end if
208: return L

π(XF ):

500: Y F R← {0, 1}n
501: return Y F

π−1(Y B):

550: XB R← {0, 1}n
551: return XB

Fig. 17. Game G3

Initialization:

0: NL is an empty list.

E(T,M):

100: Parse T into (N̄ , (i, j))
101: L← compL(N̄)
102: XM ←M ⊕ yi(y+ 1)jL
103: YM ← ϖ(XM )
104: C ← YM ⊕ yi(y+ 1)jL
105: return C

E−1(T,C):

150: Parse T into (N̄ , (i, j))
151: L← compL(N̄)
152: Y C ← C ⊕ yi(y+ 1)jL
153: XC ← ϖ−1(Y C)
154: M ← XC ⊕ yi(y+ 1)jL
155: return M

function compL(N̄):

200: if ∃(N̄ , L′) ∈ NL then
201: L← L′

202: else
203: XN ← K∥N̄
204: Y N ← ϖ(XN )
205: L← XN ⊕ Y N

206: NL← NL ∪ {(N̄ , L)}
207: end if
208: return L

π(XF ):

500: Y F ← ϖ(XF )
501: return Y F

π−1(Y B):

550: XB ← ϖ−1(Y B)
551: return XB

ϖ(X):

700: Y
R← {0, 1}n

701: return Y

ϖ−1(Y ):

750: X
R← {0, 1}n

751: return X

Fig. 18. Game G4
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Initialization:

0: NL is an empty list.

E(T,M):

100: Parse T into (N̄ , (i, j))
101: L← compL(N̄)
102: XM ←M ⊕ yi(y+ 1)jL
103: YM ← ϖ(XM )
104: C ← YM ⊕ yi(y+ 1)jL
105: return C

E−1(T,C):

150: Parse T into (N̄ , (i, j))
151: L← compL(N̄)
152: Y C ← C ⊕ yi(y+ 1)jL
153: XC ← ϖ−1(Y C)
154: M ← XC ⊕ yi(y+ 1)jL
155: return M

function compL(N̄):

200: if ∃(N̄ , L′) ∈ NL then
201: L← L′

202: else
203: XN ← K∥N̄
204: Y N ← ϖ(XN )
205: L← XN ⊕ Y N

206: NL← NL ∪ {(N̄ , L)}
207: end if
208: return L

π(XF ):

500: Y F ← ϖ(XF )
501: return Y F

π−1(Y B):

550: XB ← ϖ−1(Y B)
551: return XB

ϖ(X):

700: return P(X)

ϖ−1(Y ):

750: return P−1(Y )

Fig. 19. Game G5

E(T,M):

100: Parse T into (N̄ , (i, j))
101: L← compL(N̄)
102: XM ←M ⊕ yi(y+ 1)jL
103: YM ← π(XM )
104: C ← YM ⊕ yi(y+ 1)jL
105: return C

E−1(T,C):

150: Parse T into (N̄ , (i, j))
151: L← compL(N̄)
152: Y C ← C ⊕ yi(y+ 1)jL
153: XC ← π−1(Y C)
154: M ← XC ⊕ yi(y+ 1)jL
155: return M

function compL(N̄):

200: XN ← K∥N̄
201: Y N ← π(XN )
202: L← XN ⊕ Y N

203: return L

π(X):

500: return P(X)

π−1(Y ):

550: return P−1(Y )

Fig. 20. Game G6

Theorem 6. Let n and s be positive integers such that n/2−s ≥ 1 and n is even. Let d1 and d2 be positive
integers. Let (flag, N, i, j) be a tweak of TEM such that (flag, N, i, j) ∈ {0, 1}s × {0, 1}n/2−s × Zd1 × Zd2

and (i, j) ̸= (0, 0). Let y ∈ GF(2n) such that yi(y+ 1)j ̸= 1 and yi(y+ 1)j ̸= yi
′
(y+ 1)j

′
for any distinct

(i, j) and (i′, j′) in Zd1 × Zd2 \ {(0, 0)}. Then, for any distinguisher D,

AdvtprpTEM(D) ≤
σ2

2n−1
+

σ

2n/2
,

where σ is the total number of invocations of P and P−1 induced by queries made by D.
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Proof. Clearly, for any D, there exists a D∗ such that

AdvtprpTEM(D) ≤ AdvstprpTEM (D∗) .

Thus, from Theorem 5, this theorem holds. ⊓⊔

3.2 Minimum Number of Active S-boxes of 4-round Minalpher-P in Differential
Cryptanalysis

In this section, we prove that the minimum number of active S-boxes of 4-round Minalpher-P is 22.

3.2.1 Preliminaries

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

B0

A0

B1

A1

B2

A2

B3

A3

FLi

SRSN MC

FHi

SRSN MC
-1

Fig. 21. 4-round Minalpher-P

3.2.1.1 Equivalent Transformation

For simplicity of analysis, we use a different representation of the round function of Minalpher-P . The
order of operations is SubNibbles, ShuffleRows, MixColumns, XorMatrix, and then SwapMatrices. The
XORing with the round constant is omitted because it does not affect the number of active S-boxes. We
can express the 4-round computation of Minalpher-P as Fig. 21, where FHi = MC ◦ SR−1 ◦ SN and
FLi = MC ◦ SR ◦ SN .

3.2.1.2 Notations

Let X and X∗ be values on
{
{0, 1}4

}4×8
. Let ∆X be the difference between X and X∗ as ∆X = X⊕X∗.

Moreover, δX ∈ {0, 1}4×8
is defined as follows:

δX[i][j] = 1 if ∆X[i][j] ̸= 0 for any i = 0, 1, 2, 3 and j = 0, 1, . . . , 7

δX[i][j] = 0 if ∆X[i][j] = 0 for any i = 0, 1, 2, 3 and j = 0, 1, . . . , 7

For δX ∈ {0, 1}4×8
, the number of active nibbles (An(δX)), the number of active columns (Ac(δX)),

the number of maximum active nibbles for any row (Mn(δX)) and the number of maximum active nibbles
for any column (Mc(δX)) are defined as follows:

An(δX) =
3∑

i=0

7∑
j=0

δX[i][j], Ac(δX) = #

{
0 ≤ j ≤ 7

∣∣∣∣
(

3∑
i=0

δX[i][j]

)
̸= 0

}
,

Mn(δX) = max


7∑

j=0

δX[i][j]

∣∣∣∣0 ≤ i ≤ 3

 , Mc(δX) = max

{
3∑

i=0

δX[i][j]

∣∣∣∣0 ≤ j ≤ 7

}
.

3.2.2 Basic Properties Used in Proof

We show the minimum number of active S-boxes for 4-round Minalpher-P (see Fig. 21). Each number
of active S-boxes in the FHi-function and FLi-function is equal to An(δBi) and An(δAi), respectively.

Then the number of active S-boxes in 4-round Minalpher-P is
∑3

i=0(An(δAi) + An(δBi)).
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X

Z

Y
SRSN MC

SRSN MC

-1

SRSN MC

SRSN MC

-1

FL1

FH1

FL2

FH2

Fig. 22. Properties of 2-round Minalpher-P

3.2.2.1 Properties of 2-round Minalpher-P

First we show several properties of 2-round Minalpher-P , and the FHi-function and FLi-function have a
MixColumns (MC) whose branch number is 4. Let X and Z be the outputs of FH1 and FL1, respectively.
Let Y be the input of FH2. Then, 2-round Minalpher-P satisfies the following properties (see Fig. 22).

1. The sum of the number of active S-boxes in FH1 and FL2 is at least 4×Ac(δX).
2. The sum of the number of active S-boxes in FH1, FL1 and FH2 is at least 4×Ac(δY ).
3. The sum of the number of active S-boxes in FL1, FH2 and FL2 is at least 4×Ac(δZ).

3.2.2.2 Properties from Involutive Functionality

Y1

Y0

MC

MC

Y3

Y2

MC

MC

X2

X3

SRSN MC

SRSN MC

-1

X0

X1

MC

MC

X0

X1

SRSN MC

SRSN MC

-1

X2

X3

SRSN MC

SRSN MC

-1

Y3

Y2

SRSN

SRSN

-1

Y1

Y0

SR SN

SR SN

-1

SR SN

SR SN

-1

SR SN

SR SN

-1

SR SN

SR SN

-1

Fig. 23. Properties from Involutive Functionality

We can simplify the proof of the minimum number of active S-boxes by using the fact that Minalpher-
P is involutive. Let nH1, nH2, nH3 and nH4 be numbers of active S-boxes of FH1, FH2, FH3 and FH4,
respectively. Let nL1, nL2, nL3 and nL4 be numbers of active S-boxes of FL1, FL2, FL3 and FL4,
respectively. We consider a fixed value n. Then if the minimum number of active S-boxes of 4-round
Minalpher-P with nH1 = n is at least 22, the minimum number of active S-boxes of 4-round Minalpher-
P with nL4 = n is at least 22. In this section, we prove this property. In Fig. 23, the bottom figure can
be obtained by applying an equivalent transformation to the upper one. The forward operation of the
upper function and the backward operation of the bottom function are equivalent. Then if we prove the
minimum number of active S-boxes against one side, we do not need to prove that against the other side.
Similarly, if minimum numbers of active S-boxes of 4-round Minalpher-P with nH2 = n, nH3 = n and
nH4 = n are at least 22, minimum numbers of active S-boxes of 4-round Minalpher-P with nL3 = n,
nL2 = n and nL1 = n are at least 22, respectively.

3.2.2.3 Properties from SR and MC

Let A1 and B1 be the input of FH1 and FL1, respectively. Let A2 and B2 be the output of FH2 and
FL2, respectively. X denotes the output of FH1 and Y denotes the input of FH2. Fig. 24 shows 2-round
Minalpher-P . Minalpher-P is designed to fulfill the following properties.

Property 1

– When A1 is nonactive, Ac(δB1) + Ac(δA2) is at least 4.
– When B1 is nonactive, Ac(δA1) + Ac(δA2) and Ac(δA1) + Ac(δB2) are at least 4.
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A1

B1

A2

B2

SRSN MC

SRSN MC

-1

SRSN MC

SRSN MC

-1X Y

Fig. 24. Properties from SR and MC

– Otherwise, Ac(δA1) + Ac(δB2) is at least 4.

Property 2 For any A1 satisfying Mn(δA1) = 1 and B1 satisfying δB1 = δA1, An(δB1) + An(δY ) ≥ 6
is always satisfied.

Property 3 For any X and Y satisfying Ac(δX) = Ac(δY ) = 1. The positions of active column of X
and Y are identical. Then Ac(δ(A1 ⊕ B1)) ≥ Mc(δMC(X)) and Ac(δ(A2 ⊕ B2)) ≥ Mc(δX) are always
satisfied, namely, Ac(δ(A1 ⊕B1)) + Ac(δ(A2 ⊕B2)) ≥ 4 is always satisfied.

Property 4

– When A1 is nonactive and Ac(Y ) ≥ 2, Ac(δB1) + Ac(δA2) is at least 5.
– When A1 is active and Ac(X) ≥ 2, Ac(δA1) + Ac(δB2) is at least 5.

3.2.3 Proof Details

We prove the minimum number of active S-boxes by using the case analysis. First we consider 4-round
Minalpher-P where any FHi-function or FLi-function is nonactive. In Minalpher-P , FLi+1 is always
nonactive if FHi is nonactive. Moreover we consider 4-round Minalpher-P where all functions are active.
Then all possibilities are covered with the following cases.

1. FL1 is nonactive.
2. FL2 is nonactive.
3. FL3 is nonactive.
4. FL4 is nonactive.
5. FH4 is nonactive.
6. All functions are active.

We do not need to care the case 4, because the case 4 is equivalent to the case 2 due to the properties
from involutive functionality. Similarly we do not need to care the case 5, because the case 5 is equivalent
to the case 1.

3.2.3.1 Case of Nonactive FL1

Let X be the output of FH2. Let Y be the input of FH2. Let Z be the output of FL3. Fig. 25 shows
4-round Minalpher-P . We pay attention to Ac(δX) and prove the minimum number of active S-boxes by
using a case analysis.

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

XY

Z

Fig. 25. Case of Nonactive FL1
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– When Ac(δX) = 1, Ac(δY ) + Ac(δZ) ≥ 4 is always satisfied because of Property 1. Then the total
number of active S-boxes of FH1, FH2, FL3, FH4 and FL4 is at least 4 × 4 = 16. Moreover X
satisfying Ac(δX) = 1 always satisfies Mn(δY ) = 1, then the total number of active S-boxes of FL2

and FH3 is at least 6 because of Property 2. Therefore the total number of active S-boxes of 4-round
Minalpher-P is at least 16 + 6 = 22.

– When Ac(δX) ≥ 2, Ac(δY ) + Ac(δZ) ≥ 5 is always satisfied because of Property 4. Then the total
number of active S-boxes of FH1, FH2, FL3, FH4 and FL4 is at least 4 × 5 = 20. Moreover both
FL2 and FH3 are active, thus the total number of active S-boxes of 4-round Minalpher-P is at least
20 + 2 = 22.

3.2.3.2 Case of Nonactive FL2

Let X be the output of FH2. Let Y be the input of FH2. Let Z1 and Z2 be the output of FH3 and FL3,
respectively. Fig. 26 shows 4-round Minalpher-P . We pay attention to Ac(δX) and prove the minimum
number of active S-boxes by using a case analysis.

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

Y

Z2

X Z1

Fig. 26. Case of Nonactive FL2

– When Ac(δX) = 1, Ac(δY ) + Ac(δZ1) ≥ 4 is always satisfied because of Property 1. Then the total
number of active S-boxes of FL1, FH2, FH3 and FL4 is at least 4× 4 = 16. Moreover X satisfying
Ac(δX) = 1 always satisfies Mn(δX) = 1, then the total number of active S-boxes of FL3 and
FH4 is at least 6 because of Property 2. Therefore the total number of active S-boxes of 4-round
Minalpher-P is at least 16 + 6 = 22.

– When Ac(δX) ≥ 2, Ac(δY ) + Ac(δZ1) ≥ 5 is always satisfied because of Property 4. Then the total
number of active S-boxes of FL1, FH2, FL3, FH4 and FL4 is at least 4 × 5 = 20. Moreover the
number of active S-boxes of FH3 is at least 2 when X satisfies Ac(δX) ≥ 2. Therefore the total
number of active S-boxes of 4-round Minalpher-P is at least 20 + 2 = 22.

3.2.3.3 Case of Nonactive FL3

Let X be the input of FH3. Let Y1 and Y2 be the output of FH1 and FL1, respectively. Let Z1 and Z2

be the input of FH3 and FL3, respectively. Fig. 27 shows 4-round Minalpher-P . We pay attention to
Ac(δX) and prove the minimum number of active S-boxes by using a case analysis.

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

Y2

Z1XY1

Z2

Fig. 27. Case of Nonactive FL3

– When Ac(δX) = 1, Ac(δY 1)+Ac(δZ2) ≥ 4 and Ac(δY 2)+Ac(δZ1) ≥ 4 are always satisfied because
of Property 1. Then the total number of active S-boxes of FH1, FL2, FH3 and FL4 is at least
4 × 4 = 16. Moreover the total number of active S-boxes of FL1, FL2, FH3 and FH4 is at least
4×4 = 16. Now the maximum number of active S-boxes of FL2 and FH3 is 8 because of Ac(δX) = 1.
Then the total number of active S-boxes of 4-round Minalpher-P is at least 16 + 16− 8 = 24.
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– When Ac(δX) ≥ 2, Ac(δY 1)+Ac(δZ2) ≥ 5 is always satisfied because of Property 4. Then the total
number of active S-boxes of FH1, FL2, FH3 and FL4 is at least 4×5 = 20. Now both FH3 and FH4

are active, then the total number of active S-boxes of 4-round Minalpher-P is at least 20 + 2 = 22.

3.2.3.4 Case of All Active F -functions

Finally we show the minimum number of active S-boxes of 4-round Minalpher-P is 22 when all FHi/FLi-
functions are active. Let X be the output of FH2. Let Y be the input of FH2. Let Z be the output of
FH3. Fig. 28 shows 4-round Minalpher-P . We pay attention to Ac(δX) and prove the minimum number
of active S-boxes by using a case analysis.

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

Y

Z

X

Fig. 28. Case of All Active F -functions

– When Ac(δX) is 1, Ac(δY ) + Ac(δZ) ≥ 4 is always satisfied because of Property 1. Then the total
number of active S-boxes of FH1, FL1, FH2, FL3, FH4 and FL4 is at least 4 × 4 = 16. We need
to show that the minimum number of active S-boxes of 4-round Minalpher-P is 22 when the sum of
active S-boxes of FL2 and FH3 is less than 6. Then we consider the following cases,
1. The number of active S-boxes of FL2 is 1,
2. The number of active S-boxes of FL2 is 2,
3. The number of active S-boxes of FL2 is 3,
4. The number of active S-boxes of FL2 is 4.
We prove case 1 and case 2 in the next paragraph, while we do not need to care the other cases. If the
number of active S-boxes of FL2 is more than 2, the necessary condition that the minimum number
of active S-boxes of 4-round Minalpher-P is less than 22 is that the number of active S-boxes of FH3

is less than 3. If minimum numbers of active S-boxes of 4-round Minalpher-P in case 1 and case
2 are at least 22, we do not need to prove case 3 and case 4 because of properties from involutive
functionality.

– When Ac(δX) is more than 1, Ac(δY ) + Ac(δZ) ≥ 5 is always satisfied because of Property 4. Then
the total number of active S-boxes of FH1, FL1, FH2, FL3, FH4 and FL4 is at least 4 × 5 = 20.
Moreover, the total number of active S-boxes of 4-round Minalpher-P is at least 20+ 2 = 22 because
both FL2 and FH3 are active.

Case of 1 Active S-box in FL2

X denotes the output of FH2, Y denotes the input of FH3 and Z denotes the output of FL2. We pay
attention to the active columns of X and Z.

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

1

3

XA BY

Z

Fig. 29. Case that the Active Column Positions of X and Z Are Different

First we pay attention to 4-round Minalpher-P where the active column position of X and that of Z
are different. Let A and B be the output of FH1 and FH3, respectively. Fig. 29 shows 4-round Minalpher-
P . Now Mc(δZ) ≥ 3 is always satisfied, and the active column of X and that of Z is different. Then
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Mc(δY ) ≥ 3 is also satisfied, and it derives Ac(δB) ≥ 3. Therefore Ac(δA) + Ac(δX) + Ac(δB) ≥ 5
is always satisfied. As a result the total number of active S-boxes of 4-round Minalpher-P is at least
20 + 2 = 22 because both FL1 and FH4 are active.

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

1

3

3 X Y B

ZA

Fig. 30. Case that the Active Column Positions of X and Z Are Identical

Next, we pay attention to 4-round Minalpher-P where the active column position of X and that of
Z are identical. Let A and B be the output of FL1 and the input of FH4, respectively. Fig. 30 shows
4-round Minalpher-P . X and Y satisfy Ac(δX) = Ac(δY ) = 1, and the position of active column of X
and Y are the same. In this case, Ac(δA)+Ac(δB) ≥ 4 is always satisfied because of Property 3. Then the
total number of active S-boxes of FL1, FH2, FL2, FH3, FL3 and FH4 is at least 4× 4 = 16. Moreover
the number of active S-boxes of FL4 is at least 3 because of Ac(δY ) = 1. Therefore the total number of
active S-boxes of 4-round Minalpher-P is at least 16 + 3 + 3 = 22.

Case of 2 Active S-boxes in FL2

X denotes the output of FH2, Y denotes the input of FH3 and Z denotes the output of FL2. We pay
attention to Ac(δZ).

FH1

FL1

FH2

FL2

FH3

FL3

FH4

FL4

2

XA BY

Z

Fig. 31. Case of 2 Active S-boxes in FL2

First, we pay attention to 4-round Minalpher-P satisfying Ac(δZ) = 2. Let A and B be the output of
FH1 and FH3, respectively. Fig. 31 shows 4-round Minalpher-P . When Z has two active columns and 3
nibbles of each active column are active. Now Y is calculated as X⊕Z and Ac(δX) = 1 is satisfied. Then
Mc(δY ) ≥ 3 is always satisfied, and it derives Ac(δB) ≥ 3. Therefore Ac(δA) + Ac(δX) + Ac(δB) ≥ 5
is always satisfied. As a result, the total number of active S-boxes of 4-round Minalpher-P is at least
20 + 2 = 22 because both FL1 and FH4 are active.

Next, we pay attention to 4-round Minalpher-P satisfying Ac(δZ) = 1. Moreover we assume that
active column positions of X and Z are different. When Ac(δZ) is 1, the number of active nibbles in
an active column is 2. Now Y is calculated as X ⊕ Z and, and the active column of X and that of Z
are different. Then Mc(δY ) ≥ 2 is always satisfied, and it derives Ac(δB) ≥ 2. Moreover Ac(δA) ≥ 2 is
always satisfied because Ac(δZ) = 1. Therefore Ac(δA) + Ac(δX) + Ac(δB) ≥ 5 is always satisfied. As a
result, the total number of active S-boxes of 4-round Minalpher-P is at least 20 + 2 = 22 because both
FL1 and FH4 are active.

Next, we pay attention to 4-round Minalpher-P satisfying Ac(δZ) = 1. Moreover we assume that
active column positions of X and Z are identical. Let A and B be the output of FL1 and the input of
FH4, respectively. Fig. 32 shows 4-round Minalpher-P . X and Y satisfy Ac(δX) = Ac(δY ) = 1, and
active column positions of X and Y are identical. In this case, Ac(δA) + Ac(δB) ≥ 4 is always satisfied
because of Property 3. Then the total number of active S-boxes of FL1, FH2, FL2, FH3, FL3 and FH4

is at least 4× 4 = 16. Moreover the number of active S-boxes of FH1 is at least 6 because of Ac(δZ) = 1.
As a result, the total number of active S-boxes of 4-round Minalpher-P is at least 16+6+1 = 23 because
FL4 is active.
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3.2.4 Remark for 5-, 6- and 7-round Minalpher-P

The minimum number of active S-boxes for 4-round Minalpher-P is 22. To obtain the minimum number
of active S-boxes for 5-, 6- and 7-round Minalpher-P , we use the mixed integer linear programming [39].
As experimental results, minimum numbers of active S-boxes for 5-, 6- and 7-round Minalpher-P are
proven to be 41, 58 and 72, respectively.

3.3 Cryptanalysis

In this section, we show initial security evaluation of Minalpher. Note that the key size is 128 bits, and
thus Minalpher loses all security when the attacker has a computation power of 128 bits to perform the
brute force key recovery attack. In this section, the attacker’s main goal is showing forgery attacks and
tweak recovery attacks for reduced-round variants. The security proof of Minalpher is based on the 128-
bit security for indistinguishability of the tweakable Even-Mansour from an ideal tweakable permutation.
Hence, distinguishing attacks up to 2128 complexity are also discussed.

3.3.1 Differential Cryptanalysis

The security against classical differential cryptanalysis [6] can be roughly evaluated from the number
of active S-boxes and the probability of the maximum differential characteristic for each S-box. The
probability of the maximum differential characteristic for each S-box is 2−2. As discussed in Sect. 3.2,
the number of minimum active S-boxes is proved for the reduced-round variant of Minalpher-P , which is
summarized in Table 2.

Table 2. The Number of Minimum Active S-boxes

Number of Rounds 1 2 3 4 5 6 7 ≥ 8

Theoretical Proof 1 4 10 22 N/A N/A N/A N/A
Experimental Proof 1 4 10 22 41 58 72 N/A

From Table 2, the number of active S-boxes is greater than 64 after 6 rounds. The probability of the
maximum differential characteristic for 7 rounds is at most 2−144. It seems quite difficult to mount a
differential cryptanalysis against full rounds, i.e. 17.5 rounds.

On the contrary, the 6-round differential characteristic with probability 2−2×58 = 2−116 immediately
leads to forgery attacks. In the following, we show two types of forgery attacks for 5.5 rounds.1

3.3.1.1 Existential Ciphertext Forgery Attack
The adversary observes valid tuples of 1-block ciphertext C, nonce N and corresponding tag tag. The goal
of the adversary is producing a pair of a ciphertext C ′ and a tag tag′ such that C ̸= C ′ and (C ′, N, tag′)
will pass the verification by the decryption oracle.

1 6 rounds can be attacked, but we prefer to consider the reduced round variant with a half round in the end.
Otherwise, the permutation is not involutive.
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For a one-block ciphertext, the computation of the tag can be written as follows, which is also illus-
trated in Fig. 33.

tag ← P (C ⊕ tw ⊕ ad)⊕ tw,

where, tw is a tweak value and ad is an output from the associated data part. The attack strategy is using
a pair of differences (∆I ,∆O) such that the input difference ∆I is transferred to ∆O with probability
higher than 2−128. Then, by setting C ′ ← C ⊕∆I and tag′ ← tag ⊕∆O, (C

′, N, tag′) can be valid with
probability higher than 2−128.

The propagation of the number of active nibbles in the 5.5-round differential characteristic with 58
active S-boxes is as follows:

Round 1 (11, 5)
SN→ (11, 5)

SR→ (11, 5)
SM→ (5, 11)

XM→ (5, 10)
MC→ (3, 8)

RC→ (3, 8),

Round 2 (3, 8)
SN→ (3, 8)

SR→ (3, 8)
SM→ (8, 3)

XM→ (8, 7)
MC→ (4, 5)

RC→ (4, 5),

Round 3 (4, 5)
SN→ (4, 5)

SR→ (4, 5)
SM→ (5, 4)

XM→ (5, 3)
MC→ (3, 1)

RC→ (3, 1),

Round 4 (3, 1)
SN→ (3, 1)

SR→ (3, 1)
SM→ (1, 3)

XM→ (1, 4)
MC→ (3, 4)

RC→ (3, 4),

Round 5 (3, 4)
SN→ (3, 4)

SR→ (3, 4)
SM→ (4, 3)

XM→ (4, 5)
MC→ (8, 3)

RC→ (8, 3),

Round 5.5 (8, 3)
SN→ (8, 3)

SR→ (8, 3)
SM→ (3, 8),

where the left and right numbers in a parenthesis represent the number of active nibbles in the half state
A and B, respectively. The characteristic is also depicted in Fig. 35.

We fix the input difference of all the 16 active nibbles to be identical. According to the property of the
S-box, the maximum probability of the differential characteristic for any active S-box is 2−2. If all active
S-box satisfy the differential transition with a maximum probability, the following linear computation
part, i.e., XorMatrix and MixColumns, can satisfy the above differential propagation. The number of
active S-boxes is 16 for the first round, 11 for the second round, 9 for the third round, 4 for the fourth
round, 7 for the fifth round, and 11 for the last 0.5 round, in total 58. Therefore, with a probability
of 2−2×58 = 2−116, the above differential propagation is satisfied. Finally, with 2116 different choices of
(C, tag) and (C ′, tag′), the adversary succeeds in the forgery attack.

Note that, a classical existential forgery attack on MAC schemes finds two distinct input messages
M,M ′ producing the same tag value. While, the attack in this section is different in the sense that the
adversary’s goal is finding two distinct ciphertexts C,C ′ producing the same tag value. Hence, we call
the attack existential ciphertext forgery attack. Also note that the classical existential forgery attack in
the AEAD mode is hard in the nonce respect model, because the same nonce cannot be reused under the
same key. However, because the MAC mode does not use the nonce, the above differential cryptanalysis
can be applied to the classical existential forgery attack on the MAC mode directly.
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Fig. 35. 5.5-round Differential Characteristic with 58 Active S-boxes

3.3.1.2 Second Preimage Ciphertext Forgery Attack
The above existential ciphertext forgery attack can be converted into the 5.5-round second preimage
forgery attack, in which the goal of the adversary is, with a given tuple of (C,N, tag), finding another
ciphertext C ′ which results in the given tag tag. To achieve this goal, the size of the given ciphertext
must be two blocks or longer. In this section, the size of the given ciphertext is assumed to be two blocks.
(Even if it is longer than two blocks, the adversary can do the same by focusing on the last two-block
computation). For a two-block ciphertext, the computation of the tag can be written as follows, which is
also illustrated in Fig. 34.

tag ← P (P (C[1]⊕ tw)⊕ ad⊕ C[2]⊕ tw′)⊕ tw′.

The adversary sets C ′ ← (C[1] ⊕∆I∥C[2] ⊕∆O). ∆I on the input to the first block will return ∆O

after 5.5 rounds with probability 2−116, and this will be canceled out by the difference of C[2]. Therefore,
with probability 2−116, (C ′, N, tag) can be valid.

3.3.2 Linear Cryptanalysis

Similarly to the differential cryptanalysis, the resistance against linear cryptanalysis can be explained
with Table 2. Because the probability of the maximum linear characteristic is 2−2 for each S-box, the
probability of the maximum linear characteristic for 7 rounds is at most 2−144. It seems quite difficult to
mount a linear cryptanalysis against full rounds.

3.3.3 Truncated Differential Cryptanalysis

3.3.3.1 6-round Iterative Differential Characteristic
We first introduce the 6-round iterative differential characteristic, which is later used for the truncated dif-
ferential cryptanalysis. The iterative characteristic is given in Fig. 36. The number of active S-boxes trans-
fers as 8 → 8 → 16 → 8 → 8 → 16 → 8 in each round. Moreover, with appending one more round in
the end, the 7-round characteristic involves 72 S-boxes. This matches the number in Table 2, thus the
characteristic has the minimum number of active S-boxes for 7 rounds.
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Fig. 36. 6-round Iterative Differential Characteristic

3.3.3.2 7.5-round Partial Tweak Recovery Attack

With the above characteristic, a partial tweak recovery attack can be performed for 7.5 rounds. In this
attack, we use the first 5 rounds of the iterative differential characteristic and extend it by 1 round in
backward and by 1.5 rounds in forward. The entire characteristic is shown in Fig. 37.

In the truncated differential cryptanalysis, the attacker focuses on whether each nibble is active or
inactive. Hence, SN and AC operations do not give any impact to the truncated differential characteristic,
and only the linear operations can affect it. We start with summarizing the property of the MC operation.

1. 4 active nibbles can shrink to 2 active nibbles with probability 2−8.
2. 3 active nibbles can shrink to 1 active nibble with probability 2−8.
3. 3 active nibbles can shrink to 2 active nibbles with probability 2−4.
4. 2 active nibbles can be 2 active nibbles again with probability 2−4.

However, if the impact of the XM operation is considered, the analysis can be complicated. We carefully
evaluate the probability of the truncated differential transition in each round. Remember that each state
is denoted by the notations defined in Sect. 1.4.

Round 1: For each column with active nibbles inAMC
0 , i.e.AMC

0 [·][2], AMC
0 [·][3], AMC

0 [·][6], andAMC
0 [·][7],

the truncated differential characteristic is satisfied with probability 2−8. The total probability in this
round is (2−8)4 = 2−32.

Round 2: For each column with active nibbles in AMC
1 , the truncated differential characteristic is sat-

isfied with probability 2−4. The total probability in this round is (2−4)4 = 2−16.
Round 3: For each column with active nibbles in AMC

2 , the truncated differential characteristic is sat-
isfied with probability 2−4. The difference in BXM

2 is the same as the one in AXM
2 . Thus, when the

differential transition from AXM
2 to AMC

3 is satisfied, the differential transition from BXM
2 to BMC

3

is also satisfied. The total probability in this round is (2−4)4 = 2−16.
Round 4: The XM operation is probabilistic in this round. For column position i, where i = 0, 1, 4, 5,

the condition that 4 active nibbles shrink to 2 active nibbles after the XM and MC operations is
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Fig. 37. 7.5-round Partial Tweak Recovery with Truncated Differential Attack

∆AXM
3 [0][i] = ∆AXM

3 [2][i] = ∆BXM
3 [0][i] = ∆BXM

3 [2][i]. This is satisfied with probability 2−12 for
each column i. The total probability in this round is (2−12)4 = 2−48.

Round 5: With the similar evaluation as Round 2, the total probability in this round is 2−16.
Round 6: With the similar evaluation as Round 3, the total probability in this round is 2−16.
Round 7: The only probabilistic event in this round is the difference cancellation in the XM operation.

Hence, the condition is AXM
6 [j][i] = BXM

6 [j][i] for each pair of (i, j), where i ∈ {2, 3, 6, 7}, j ∈ {0, 2}.
There are 8 choices of (i, j), thus the total probability in this round is (2−4)8 = 2−32.

In the end, the probability for 7.5 rounds is 2−32−16−16−48−16−16−32 = 2−176. After 7.5 rounds, the
ciphertext is generated by taking the XOR with a secret tweak value. Note that as long as the above
characteristic is satisfied, 48 nibbles of the ciphertext are inactive.

The attack is performed in the nonce-misuse model. The attack procedure is as follows.

1. Fix inactive nibbles of the plaintext to a randomly chosen value. Prepare 264 all different values for
the 16 active nibbles in the plaintext, which produces 2127 pairs in one structure. By changing the
inactive nibble values 250 times, prepare 250 structures, which produces 2177 pairs in total.

2. For each structure, query 264 plaintexts under the same nonce and key to obtain the corresponding
ciphertexts.
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3. Sort those 264 ciphertexts by using 48 inactive nibble values as index. If a pair colliding in 48 inactive
nibbles of the ciphertext is found, pick up the pair. The pair is expected to follow the truncated
differential characteristic in Fig. 37.

4. Repeat Step 3 for 250 structures. Two pairs are expected to satisfy the characteristic.
5. Guess the tweak value partially. This can be done in column by column. For example, guess 216

values of tweak in nibble positions (0, 1), (1, 0), (2, 4) and (3, 6), which are stressed by bold lines in
Fig. 37. With the partial decryption up to state AXM

6 , only the correct guess lead to 2 active nibbles
at AXM

6 [·][2] for both pairs.
6. Many tweak nibbles can be recovered in the same method. We omit the remaining procedure.

In the above procedure, 2177 pairs of plaintexts are generated. Because the probability of the truncated
differential characteristic is 2−176, two pairs are expected to satisfy the characteristic. On the contrary,
the probability that 48 nibbles become inactive with 2177 pairs is 2177−(48×4) = 2−15, which is unlikely
to occur. Thus, the detected two pairs are right pairs. Each guessed tweak generates 2 active nibbles at
the fixed positions with probability 2−8. Thus, by testing two pairs, the number of correct tweak guess
becomes 216−8−8 = 1. The success probability increases by using more data complexity.

In the end, the data complexity of the attack is 2114 chosen plaintexts. It also requires 2114 memory
accesses to deal with those plaintexts and obtained ciphertexts. The analysis can be done for each struc-
ture, thus the memory requirement is for storing 264 plaintexts. Note that the computational cost for the
tweak guess is negligible compared to processing 264 texts.

3.3.4 Boomerang Attack and Amplified Boomerang Attack

3.3.4.1 Attack Scenario (Nonce Misuse Setting)

The boomerang attack [51] divides the target cipher E into two subsequent subciphers E1 ◦E0. Suppose
that there exists a differential characteristic for E0 which propagates the input difference ∆IN to an
output difference represented by α with probability p. Also suppose that there exists a differential char-
acteristic for E1 which propagates the input difference β to an output difference represented by ∆OUT

with probability q. The framework of the boomerang attack for authenticated encryption schemes is as
follows.

1. The adversary chooses a pair of plaintexts (P0, P1) such that their difference P0⊕P1 = ∆IN . (P0, P1)
are passed to the encryption oracle with the same nonce value N , and the adversary obtains the
corresponding ciphertexts (C0, C1).

2. The adversary generates (C2, C3) by C2 ← C0 ⊕∆OUT and C3 ← C1 ⊕∆OUT . (C2, C3) are passed
to the decryption oracle with the same nonce value N , and the adversary obtains the corresponding
plaintexts (P2, P3).

3. The equation P2 ⊕ P3 = ∆IN is satisfied with probability p2q2.

Note that the attack requires the misuse of the nonce, i.e., the same nonce value needs to be used when
P0 and P1 are passed to the encryption oracle. One may think that the queries to the encryption oracle
can be avoided in different attack scenarios, e.g., starting from choosing the ciphertext or attacking the
MAC mode. However, considering that the boomerang needs to return (Enc-then-Dec or Dec-then-Enc),
we have not found any attack scenario that can work without assuming the nonce misuse.2

Our attack is a tweak recovery attack for 6.5 rounds. The first 3 rounds are set to E0 and the last 3.5
rounds are set to E1. With the similar notation as the previous section, the two differential characteristics
in our boomerang attack can be represented as follows, which are also depicted in Fig. 38.

Differential characteristic for E0

Round 1 (3, 3)
SN→ (3, 3)

SR→ (3, 3)
SM→ (3, 3)

XM→ (3, 0)
MC→ (1, 0)

RC→ (1, 0),

Round 2 (1, 0)
SN→ (1, 0)

SR→ (1, 0)
SM→ (0, 1)

XM→ (0, 1)
MC→ (0, 3)

RC→ (0, 3),

Round 3 (0, 3)
SN→ (0, 3)

SR→ (0, 3)
SM→ (3, 0)

XM→ (3, 3)
MC→ (9, 9)

RC→ (9, 9),

2 Impossibility of the rectangle attack proposed by Biham et al. [5], which uses only one of Enc or Dec, on
Minalpher is later discussed in the end of this section.
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represent active nibbles for the E0 characteristic and E1 characteristic, respectively.

Differential characteristic for E1

Round 4 (4, 6)
SN→ (4, 6)

SR→ (4, 6)
SM→ (6, 4)

XM→ (6, 6)
MC→ (2, 2)

RC→ (2, 2),

Round 5 (2, 2)
SN→ (2, 2)

SR→ (2, 2)
SM→ (2, 2)

XM→ (2, 0)
MC→ (2, 0)

RC→ (2, 0),

Round 6 (2, 0)
SN→ (2, 0)

SR→ (2, 0)
SM→ (0, 2)

XM→ (0, 2)
MC→ (0, 6)

RC→ (0, 6),

Round 6.5 (0, 6)
SN→ (0, 6)

SR→ (0, 6)
SM→ (6, 0).

Note that the active nibble positions of the output from E0 and input to E1 overlap in one nibble. We
experimentally verified that for any active nibble byte positions, the characteristic for E0 and E1 will
overlap at least in one nibble. Here we assume that the inconsistency of connecting two independent
characteristics [40] do not occur in this attack.

Similarly to the differential cryptanalysis, we fix the input difference of all the 3 + 3 = 6 active
nibbles to be identical. According the property of the S-box, the maximum probability of the differential
characteristic for any active S-box is 2−2. If all active S-boxes satisfy the differential transition with
a maximum probability, the following linear computation part, i.e., XorMatrix and MixColumns, can
satisfy the above differential propagation. The number of active nibbles for each SN operation is 6 for
the first round, 1 for the second round and 3 for the third round. Therefore, the differential characteristic
for P0 has the probability p = 2−2(6+1+3) = 2−20, which leads to p2 = 2−40. Similarly, the number of
active nibbles for each SN operation is 10 for the fourth round, 4 for the fifth round, 2 for the sixth
round and 6 for the last half round. Therefore, the differential characteristic for P1 has the probability
q = 2−2(10+4+2+6) = 2−44, which leads to q2 = 2−88. Finally, by examining the boomerang attack
framework (p2q2)−1 = 2128 times, the adversary can find a boomerang quartet, or (P1, P2, P3, P4) and
(C1, C2, C3, C4) that satisfy the two characteristics.
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Unfortunately, the above simple boomerang attack requires 2×2128 queries for both of the encryption
and decryption oracles. Thus, the data complexity is 2130, which is more than the claimed security level of
2128. However, the attack can be valid by considering multiple differential characteristics as an amplified
boomerang attack [23], which is explained in the next paragraph.

3.3.4.2 Reducing Data Complexity with Amplified Boomerang Attack

The simple boomerang attack uses only a single differential characteristic, while the amplified boomerang
attack considers the multiple differential characteristics. Let Pr[∆IN → α] be the probability of the
differential characteristic for E0, i.e., p. The amplified boomerang attack considers all possible differences
for α, and its probability is represented as

p̂ =

√∑
α

(Pr[∆IN → α])2.

Similarly, the probability for E1 is represented by

q̂ =

√∑
β

(Pr[β → ∆OUT ])2.

With the same framework as the simple boomerang attack, the probability that P2⊕P3 = ∆IN is satisfied
increases to p̂2q̂2.

Let us consider the probability of the differential transition for the first round. The input difference
is fixed to be identical for all nibbles, and if the output differences from all the S-boxes are identical, we
obtain the desired differential propagation. Due to the design policy of our S-box, for any input difference,
there is one output difference provided with probability 2−2, and there are six other output differences
provided with a probability of 2−3. The probability that all S-boxes produce an identical difference is

(2−2)6 + 6 · (2−3)6.

Its squared value is (2−4)6 + 6 · (2−6)6 ≈ 2−24. From the same reason, the probability for the second
round is (2−2)1 + 6 · (2−3)1, and its squared value is (2−4)1 + 6 · (2−6)1 ≈ 2−2.68. The evaluation for the
third round is a bit different because the cancellation after the SN operation is not necessary. Therefore,
we can have different output difference for each S-box, and only the condition is that the same active
nibbles produce the same output difference between two pairs. The squared probability is calculated by

(2−4)3 +

(
3

2

)
· 6 · (2−4)2 · (2−6) +

(
3

1

)
· 62 · (2−4) · (2−6)2 + 63 · (2−6)3 ≈ 2−8.03.

Finally, p̂2 is calculated as 2−24 · 2−2.68 · 2−8.03 = 2−34.71.
Regarding q̂, we evaluate it in the reverse order, i.e., from round 6.5 to round 4.

Round 6.5 : (2−4)6 + 6× (2−6)6 ≈ 2−24,

Round 6 : (2−4)4 + 6× (2−6)4 ≈ 2−15.97,

Round 5 : (2−4)2 + 6× (2−6)2 ≈ 2−7.54,

Round 4 :

10∑
i=0

(
10

i

)
· 610−i · (2−4)i · (2−6)10−i ≈ 2−26.78.

In total, q̂2 is calculated as 2−24 · 2−15.97 · 2−7.54 · 2−26.78 = 2−74.29.
The data complexity of the entire attack is p̂−2q̂−2 quartets, which is 234.71 · 274.29 · 4 = 2111.00. If

such a quartet is generated, the adversary can eventually recover several nibbles of the tweak value.

3.3.4.3 Impossibility of Rectangle Attack

In many cases, the adaptively chosen-ciphertext or the adaptively chosen-plaintext setting of the (ampli-
fied) boomerang attack can be avoided by using the rectangle attack framework [5]. This also allows the
adversary to attack the MAC mode, in which the nonce is never used and the decryption oracle never
exists. We show that applying the rectangle attack to Minalpher is impossible within the claimed security.
The idea of the rectangle attack for a b-bit block-cipher is as follows.
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1. Generate (p̂q̂)−12b/2 plaintext pairs satisfying the difference ∆IN .
2. Making all possible quartets. Then, about (p̂2q̂2)−12b quartets are generated.
3. One quartet is expected to satisfy p̂ in E0 for two pairs, to have the b-bit distance β between two

pairs in the middle of E0 and E1, and to satisfy q̂ in E1 for two pairs.
4. One ciphertext quartet is expected to satisfy ∆OUT in two pairs.

In the end, by satisfying (p̂q̂)−1 < 2b/2 or (p̂2q̂2)−1 < 2b, which is the same condition as the (amplified)
boomerang attack, the adversary can perform the rectangle attack. In many block-ciphers in practice, the
key size is bigger than or equal to the block-size, and thus the claimed security is at least b bits. Hence,
the rectangle attack is a valid attack. However, in Minalpher, the claimed security is 128 bits while the
permutation size is 256 bits. The rectangle attack principally requires the data complexity which is more
than 2b/2. Therefore, the rectangle attack is impossible for Minalpher.

3.3.5 Integral Attack

Integral attack was firstly proposed by Daemen et al. [15] and was later unified as integral attack by
Knudsen and Wagner [25]. It first constructs an integral distinguisher. In more details, an attacker
prepares a set of chosen plaintexts such that several bits take all possibilities among the texts and the
other bits are constant for all texts. For these plaintexts, the corresponding states after a few encryption
rounds have a certain property, e.g. the XOR sum of all states in the set is 0 with a probability 1, which
is often called a balanced property. Based on the integral distinguisher, a partial tweak recovery attack
on the AEAD mode or a forgery attack on the MAC can be constructed.

3.3.5.1 Universal Forgery Attack on 4.5 Rounds

The attack basically exploits the low algebraic degrees of 4.5-round Minalpher. The idea of the forgery
attack exploiting the low algebraic degrees was shown in [1]. In Fig. 39, we describe the 5-round integral
distinguisher. (Only the first 5 rounds out of 6 rounds are used for the universal forgery.) ‘A’ represents
that all the 16 elements in the nibble appear exactly the same number, i.e., if the data complexity is D,
each element appears exactly D/16 times. ‘B’ represents the balanced nibbles defined in the above. The
blank nibbles represents that the nibble takes only a fixed value for the entire set of texts. The initial
state contains 23 ‘A’ nibbles. Therefore, by querying 223×4 = 292 messages whose ‘A’ nibbles take all
possibilities and other nibbles are fixed to some constant, the XOR of all the corresponding 292 MAC
values becomes 0 in all nibbles.

To achieve the universal forgery attack, let M be the target message to be forged. The attacker
generates 292 − 1 new messages by computing Mi ← M ⊕∆i for ∆i = 1, 2, . . . , 292 − 1, where ∆i is the
difference for the 23 ‘A’ nibbles in the initial state. The target M can be represented by M0 because
M = M ⊕ 0. The attacker then queries Mi for i = 1, 2, . . . , 292 − 1 to the MAC oracle MAC(·), and
computes the XOR of the corresponding MAC values. Let σ be the computed XOR sum of the 292 − 1
MAC values, i.e.,

σ ←
292−1⊕
i=1

MAC(Mi).

From the 4.5-round integral distinguisher, we know that

292−1⊕
i=0

MAC(Mi) = MAC(M0)⊕
292−1⊕
i=1

MAC(Mi) = 0.

Hence, MAC(M0) = σ. The 4.5-round universal forgery attack requires 292 queries, 292 XOR computations
and negligible memory.

3.3.5.2 Partial Tweak Recovery Attack on 8.5 Rounds

For the tweak recovery attack, the condition of the output of the distinguisher can be loosed, i.e. it is
usually enough to have only 1 balanced nibble. Then, the integral distinguisher can be extended to 6
rounds, which is also shown in Fig. 39. Here, gray nibbles represent that no structural property exists in
the nibble.
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Fig. 39. Integral Distinguisher for 5 Rounds and 6 Rounds

We append 2.5 rounds after the 6-round integral distinguisher, which is shown in Fig. 40. The nibbles
with crossed lines are the ones that relate to the 2.5-round partial decryption from the ciphertext to
the output of the distinguisher. Note that the attack requires oracle accesses under the same pair of the
key and the nonce 292 times. Hence, the nonce-misuse setting for the encryption or unverified plaintext
release for the decryption. A 256-bit tweak value which is secret to the attacker is XORed to the output
of the 8.5-round Minalpher-P , and then output as a ciphertext.

As shown in Fig. 40, 23 nibbles (92 bits) are related to the partial decryption up to the balanced
nibble in the end of the distinguisher. Hence, the attack starts from storing 292 92-bit values of the
ciphertext. From the structure of the AEAD mode, it is obvious that 92 bits of the tweak value is related
to the partial decryption. With a straight-forward method, the partial decryption requires a complexity
of 292+92 = 2184. However, several techniques are known to improve the attack complexity.

The partial decryption can be described by F (C ⊕K), where C is a ciphertext, K is a secret-key and
F is a public function. In [50], Todo showed that the XOR-sum of the function output in this form can
be computed efficiently by using the Fast Fourier Transform, which was originally observed by Collard
et al. to improve the complexity of the linear cryptanalysis [14]. Let the size of the related ciphertext
bits be N , and the size of the key bits be N . Also let the size of the balanced word be b bits. Then, the
complexity is roughly evaluated as N × 2N × b [50]. In our case, N = 92 and b = 4. Thus the complexity
of the 8.5-round partial tweak recovery attack is 92×292×4 = 2100.5. The attack also requires 292 chosen
plaintexts and a memory to store 292 ciphertexts.

3.3.6 Impossible Differential Attack

As well as other permutations with an SPN structure, a relatively long impossible differential characteristic
can be constructed from 1-active nibble state to 1-active nibble state. A 6.5-round impossible differential
characteristic, which is one of the longest ones discovered in our experiment, is shown in Fig. 41. Grey
nibbles have non-zero difference with probability 1, empty nibbles do not have difference with probability
1, and nibbles with ‘?’ do not have any property with probability 1.
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Fig. 40. 8.5-round Integral Attack for Tweak Recovery

However, we currently do not have any idea to exploit the above impossible differential characteristic
with a complexity below 2128. For example, finding a pair with 1-active nibble input difference and 1-
active nibble output difference requires 2249 queries. We show the impossible differential characteristic
only for the future research progress.

3.3.7 Evaluation of Algebraic Degrees

Algebraic degrees are useful for evaluating the nonlinearity of functions. The algebraic degree of the round
function of Minalpher-P is 3 because S-box is the only non-linear component and the algebraic degree
of each S-box is 3. By the trivial evaluation, the algebraic degree of r-round Minalpher-P is at most 3r.
Boura et al. proposed how to evaluate a tighter algebraic degree [11].

Theorem 7 ([11]). Let F be a function from Fn
2 into Fn

2 corresponding to the concatenation of m smaller
S-boxes, S1, S2, . . . , Sm, defined over Fn0

2 . Then, for any function G from Fn
2 into Fℓ

2, we have

deg(G ◦ F ) ≤ n− n− deg(G)

n0 − 1
.

By using the trivial evaluation and this theorem, the upper bound of the algebraic degree of the output
of r rounds is computed as follows:

Number of Rounds 1 2 3 4 5 6 7 8 9
Bound on degree 3 9 27 81 197 236 249 253 255

By using 282 chosen plaintexts, we can construct a 4-round integral distinguisher. However, the distin-
guisher is not efficient than the one described in Subsection 3.3.5.

3.3.8 Meet-in-the-Middle Attack

A meet-in-the-middle (MitM) attack [12, 16] divides the target function F into two subsequent indepen-
dent subfunctions F1 ◦ F0. Because the analysis of F0 and F1 are done independently, the attack cost is
the sum of two analyses instead of their product. The results of the independent analyses will match in
the middle of the two subfunctions F0 and F1. If the independently simulated results are consistent, the
results can match in the middle of F0 and F1 with probability 1. Otherwise, they match only probabilis-
tically. When the function size is n bits, the MitM attack principally requires the attack complexity of at
least 2n/2.
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Fig. 41. 6.5-round Impossible Differential Characteristic for Minalpher-P

The designers have not found an efficient method to mount the MitM attack on Minalpher-P . The
primary difficulty is that the permutation size, 256 bits, is a double of the number of bits of the claimed
security, 128 bits. By following the principle, the complexity of the MitM attack is at least 2256/2 = 2128,
and it cannot be a valid attack.

3.3.9 Related-key Cryptanalysis

A generic related-key attack is known for any block-cipher with a k-bit key and a relatively big block size.
Let #R be the number of distinct key oracles to which the adversary can access, and the key relations
are known to the adversary. Let T be the time complexity. The adversary can recover all #R keys with
a trade-off T ·#R = 2k.

For simplicity, this section describes the attack on the AEAD mode in the nonce misuse setting.

1. Fix the message to a randomly chosen value, say 0.

2. The adversary queries the fixed message to #R distinct related-key oracles. The obtained ciphertexts
are stored in a list L1.

3. The adversary guesses T distinct key values and computes the ciphertexts of the fixed message. The
results are stored in a list L2.

4. A match between L1 and L2 suggests the key value with a good probability. Note that false positives
can be eliminated with two additional queries.
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3.3.10 Distinguisher on Minalpher-P with Rebound Attack

The rebound attack presented by Mendel et al. [36] is a strong distinguishing attack for key-less primi-
tives especially for AES-like hash functions and permutations. Then the SuperSbox technique was later
combined to improve the attack [19, 31]. Jean et al. further extended the attack by presenting a method
called improved rebound attack [22].

The rebound attack is well-applied to the substitution-permutation network (SPN), in which the
computation in one round consists of a non-linear layer (NL) and a linear layer (L) and key addition for
block-ciphers. In short, the rebound attack is a technique to efficiently find a pair of values satisfying the
differential transition over L–NL–L. Combination with the SuperSbox technique can efficiently satisfy
the differential transition over L–NL–L–NL–L, and the improved rebound attack can efficiently satisfy
the differential transition over L–NL–L–NL–L–NL–L. Minalpher also adopts the SPN structure, and the
improved rebound attack can be applied.

3.3.10.1 Attack Scenario (Distinguisher for the Internal Permutation)

The rebound attack aims to detect a non-ideal behavior of the target key-less primitive from the ideally
designed one. Hence, the analysis can be applied only for the internal permutation. In this section, we
never consider the impact of the key K, nonce N and tweak values. Note that security of Minalpher is
proven by assuming that the tweakable Even-Mansour construction is a 2128 tweakable pseudorandom
permutation. Hence, distinguishing a public permutation Minalpher-P from a random permutation with
complexity less than 2128 do not give any impact to the security of Minalpher.

The goal of the adversary is to detect an input difference ∆IN and the output difference ∆OUT that
can be satisfied in Minalpher faster than the cost that are necessary for a random permutation.

Note that some trivial distinguisher can be constructed easily such that the adversary chooses two
random inputs I0 and I1, computes the corresponding outputs O0 and O1, and declares that∆IN = I0⊕I1
and ∆OUT = O0 ⊕ O1 can be satisfied at the same time with two computations, while satisfying such a
property requires 2256 queries for a random permutation. This kind of distinguisher is obviously invalid
because a pair of input and output differences that can be satisfied easily can also be constructed to
a ideally designed random permutation only with two queries. We regard that the attack presented in
this section is valid because it can work even if the distinguisher is challenged with several factors i.e.
constant values or S-box specifications are randomly determined after the attack is described.

3.3.10.2 Truncated Differential Characteristic

We show that 7.5 rounds of Minalpher-P can be distinguished from a random permutation with less than
2128 complexity. The truncated differential characteristic is described in Fig. 42.

The attack divides the characteristic into the inbound part and the outbound part. The borders
between the inbound and outbound are drawn by dotted lines in Fig. 42. Namely, from state (ASN

2 , BSN
2 )

to (A6, B6) is covered by the inbound part, which includes the differential transition over L–NL–L–
NL–L–NL–L. The attacker’s first goal is finding a pair of values satisfying the inbound part as fast as
possible. The obtained pair is then tested if they also satisfy the truncated differential characteristic for
the backward outbound part and the forward outbound part. The probability in the left-hand side in
Fig. 42 shows the probability to satisfy the characteristic for each round. Note that probabilistic events
are only caused by the linear operations, XM and MC.

3.3.10.3 Inbound Phase

The detailed analysis of the inbound phase is shown in Fig. 43. We first fix the input difference to the
inbound phase (∆ASN

2 ,∆BSN
2 ) and the output difference from the inbound phase (∆A6,∆B6). Then,

the corresponding differences (∆A3,∆B3) and (∆ASN
5 ,∆BSN

5 ) can be computed uniquely because all
the related operations are linear.

Next, we proceed the computation by using the SuperSbox technique. The SuperSbox for Minalpher-
P is somehow different from the one for AES-like ciphers. Due to the XM operation, the attacker needs to
guess the values of the same column in two half states A and B. Therefore, the size of each SuperSbox for
Minalpher-P is 8 nibbles, or 32 bits. In the forward computation, we guess the values of 8-nibbles (232

possibilities) in (A3, B3) which will be located in the same column after the SR and SR−1 operations.
With those 8-nibble values, we can compute the corresponding 8-nibble values at (ASM

4 , BSM
4 ). The results

are stored as the forward SuperSbox for that column. As a result, with 8× 232 = 235 computations and
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Fig. 42. 7.5-round Truncated Differential Characteristic for Rebound Attack

8×232 = 235 memory, 8 forward SuperSboxes with 232 entries are generated. In Fig. 43, the computation
for the forward SuperSbox for column 0 is stressed by bold line with a character F . Similarly, we prepare
8 backward SuperSboxes with 8×232 = 235 computations and 8×232 = 235 memory. We omit the details.
In Fig. 43, the computation for the backward SuperSbox for column 0 is stressed by bold line with a
character B.

SuperSboxes from two directions overlap at state (ASM
4 , BSM

4 ). The goal of the attacker is to find a
value for each SuperSbox that are consistent each other. Note that, for each fixed difference (∆ASN

2 , ∆BSN
2 )

and (∆A6,∆B6), the number of values satisfying the inbound characteristic is 1. On one hand, for the
input state, we have 2256 choices of paired values. On the one hand, for the output state, two texts in the
pair must satisfy the 256-bit relation (∆A6,∆B6).

We search for the solution by using the guess-and-determine procedure. The algorithm is summarized
in [47]. However, due to the unique structure of Minalpher-P , several optimizations are necessary to apply
the improved rebound attack. In the improved rebound attack, the attacker first prepares the intersection
table to check which forward SuperSboxes and backward SuperSboxes overlap each other. As shown in
Fig. 43, the forward SuperSbox for column 0 and the backward SuperSbox for column 0 do not overlap. It is
obvious from Fig. 43 that the forward SuperSbox for column 0 overlap with the backward SuperSboxes for
columns 2, 3, 4, and 6. Moreover, they overlap in 2 nibbles. In the intersection table, the intersection of
two overlapping SuperSboxes has a blank cell. The intersection of two unrelated SuperSboxes are filled
with black. The generated intersection table is given in Fig. 44. The backward SuperSboxes cannot take
all possible differences due to the fixed active nibble positions in the characteristic. For example, column 0
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starts with 4-nibble differences, thus it takes only 216 differences. This information is listed in the bottom
of Fig 44 as a number of different differences.

Finally, we start to fix the values of SuperSboxes. The attack procedure is as follows, which is also
depicted in Fig. 45.

Guess. Fix paired values for forward SuperSboxes for columns 0, 1, and 2 from the 296 possible choices
in three columns. This fixes the value and difference for those columns. ‘

√
’ denotes that both the

value and difference of that nibble are fixed. The fixed value and difference will be constrains to the
other SuperSboxes.

Determine 1. Remember that each intersection of SuperSboxes denotes the overlap in 2 nibbles. Back-
ward SuperSboxes for columns 2, 3, and 4 already have 4-nibble constraints in the value and 4-nibble
constraints in the difference. Therefore, only 1 solution is expected for these three SuperSboxes. Those
columns are fixed with respect to value and difference in all nibbles.

Determine 2. Then, forward SuperSboxes for columns 4, 5, 6, and 7 obtain 4-nibble constraints in both
of the value and difference. Hence, those columns are fixed with respect to value and difference in all
nibbles.

Determine 3. Similarly, the consistency of all SuperSboxes can be checked, and finally the attack obtains
a solution of the inbound phase.
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The above procedure must be repeated for all the 296 possible choices in the guess phase. Thus, the
complexity to obtain the solution of the inbound phase is 296× 4/7.5 ≈ 295 7.5-round Minalpher-P com-
putations.

Note that the analysis of the inbound phase can be iterated by changing the 12-nibble starting
difference (∆ASN

2 ,∆BSN
2 ) and (∆A6,∆B6). Hence, 2

48 solutions can be generated in maximum. However,
because the attacker is only allowed to use up to 2128 computation power, generating all 248 solutions is
impossible. In this attack, we generate 232 solutions with spending 295+32 = 2127 complexity.

3.3.10.4 Outbound Phase and Comparison with a Random Permutation

With the generated 232 solutions of the inbound phase, we find the one that also satisfy the outbound
differential characteristic. The backward computation for round 2 is the only probabilistic transition. The
condition to satisfy this transition is

∆AMC
1 [0][4] = ∆AMC

1 [2][4] = ∆AMC
1 [3][4] = ∆BMC

1 [0][4] = ∆BMC
1 [2][4] = ∆BMC

1 [3][4]

∆AMC
1 [1][6] = ∆BMC

1 [1][6], ∆AMC
1 [2][6] = ∆BMC

1 [2][6], ∆AMC
1 [3][6] = ∆BMC

1 [3][6].

The total probability for round 2 is 2−32, and thus one of the obtained solutions will satisfy those
conditions. As a result, the attacker will obtain one solution to satisfy all the characteristic.

The characteristic in Fig. 42 has 13 active nibbles in the input and 16 active nibbles in the output.
According to Iwamoto et al. [21], the minimum number of queries to satisfy such input and output
differential forms with access to a random function is 2256−(4×13)−(4×16)+1 = 2141. Because our attack
finds such a pair with 2127 computations, the attack successfully distinguishes 7.5-round Minalpher-P from
a random permutation.

We stress again that distinguishing Minalpher-P from a random permutation with complexity less
than 2128 do not give any impact to the security of Minalpher.

3.3.11 Distinguisher on Minalpher-P with Rebound Attack and Iterative Characteristic

We present another type of rebound attack against 11.5 rounds of Minalpher-P . The approach is based
on the one by Matusiewicz et al. [34], which chooses the internal state value round by round to satisfy
as much differential propagation through S-box as possible.

For the middle 9 rounds (from round 3 to round 11), we use the 6-round iterative differential charac-
teristic shown in Fig. 36. We then extend it by two rounds in backward, and by a half round in forward.
For the middle 9 rounds, we consider a particular difference, which propagates with probability 2−2 for
each S-box. For the extended first two rounds, and the last half round, we consider the truncated differ-
ence, i.e. we only care if each nibble is active or inactive. The summary of the differential characteristic
is given in Fig. 46. ‘#An’ represents the number of active nibbles in that round.

The middle 3 rounds (rounds 5, 6, and 7) are the inbound part. We generate 2128 solutions of the
inbound part with a complexity of 2126 11.5-round Minalpher-P computations. Then, each solution is
tested if it also satisfies the outbound part.
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Fig. 47. Detailed Analysis of Inbound Phase.

3.3.11.1 Inbound Phase

We explain the details of the 3 inbound rounds in Fig. 47. The attack procedure is as follows.

1. Choose the active nibble difference at the beginning of round 6 (∆A5,∆B5) and at the state after
the SN operation (∆ASN

5 , ∆BSN
5 ), so that the S-box transition can have solutions. Set the value

of each nibble to the solution. Here, all the active nibbles are set to the same value and the same
difference. With this operation, the nibbles with ‘x’ in Fig. 47 are fixed with respect to both the value
and difference.

2. From the property of the linear operation, we can compute the difference of several other nibbles
though the value cannot be fixed yet. The difference of the nibbles with ‘y’ and ‘z’ in Fig. 47 are
fixed. Note that the difference of the x nibbles, y nibbles, and z nibbles are identical. However, the
value is not fixed for y and z, and they can have different values.

3. Choose the active nibble difference at the stateB4 and ASN
6 denoted by ‘w’ so that the S-box transition

can have solutions. Set the value of each nibble to the solution. Here, all the active nibbles are set to
the same value and the same difference. With this operation, all the nibbles with y, z, and w are fixed
with respect to both the value and difference but for 8 nibbles with z in BXM

4 . So far, the difference
has been consistent in all nibbles.

4. We then connect the values of x in AXM
5 and y in AMC

5 . We first pay our attention to the computation
in column 2. AMC

5 [0][2] and AMC
5 [2][2] are computed as follows.

AMC
5 [0][2] = AXM

5 [0][2]⊕AXM
5 [1][2]⊕AXM

5 [3][2],

AMC
5 [2][2] = AXM

5 [1][2]⊕AXM
5 [2][2]⊕AXM

5 [3][2].

Because we set that AMC
5 [0][2] = AMC

5 [2][2] and AXM
5 [0][2] = AXM

5 [2][2], unfixed values of AXM
5 [1][2]

and AXM
5 [3][2] can be chosen to any of the one that satisfies AMC

5 [0][2]⊕ AXM
5 [0][2] = AXM

5 [1][2]⊕
AXM

5 [3][2]. Similarly, the other active columns can be fixed. With this operation, the values of the
nibbles with ‘a’ are fixed, and all the fixed values for round 6 and 7 become consistent.

5. Similarly, we connect the values of z in AXM
4 and x in AMC

4 . The detailed explanation is omitted.
With this operation, the values of the nibbles with ‘b’ are fixed, and all the fixed values of z and x
become consistent but for 8 nibbles in BXM

4 .
6. Finally, we choose 4-nibble values at BMC

4 denoted by ‘c’, and then compute back to BXM
4 . For

any choice of 4-nibble values at BMC
4 , we obtain the valid value for BXM

4 . With this operation, the
values of the nibbles with ‘c’ are fixed and all the differential transitions in the three inbound rounds
become consistent. Note that by trying all choices of 4-nibble values at BMC

4 , up to 216 solutions can
be generated with 216 operations.

7. There are still 28 unfixed nibbles (112 unfixed bits) at state (AMC
4 , BMC

4 ), and for any value for these
nibbles, one solution of the three inbound rounds is obtained. Together with 216 solutions in the
previous step, up to 216×2112 = 2128 solutions can be generated with a complexity of 2128×3/11.5 ≈
2126 11.5-round Minalpher-P computations.
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3.3.11.2 Outbound Phase and Comparison with a Random Permutation
With the generated 2128 solutions of the inbound phase, we find the one that also satisfies the outbound
differential characteristic. As long as all S-boxes follow the differential transition with probability 2−2,
the iterative characteristic continues. The probability to satisfy each round is given in Fig. 46. With
2128 solutions, we can satisfy 2-round backward computation and 4-round forward computation. For the
remaining part, we only check if each nibble is active or inactive, thus the propagation is deterministic.
In the end, we obtain 1 pair that has only 16 active nibbles in the input and 16 active nibbles in the
output.

The complexity of the outbound phase can be smaller than 2128 11.5-round Minalpher-P computations
by using the early aborting technique. Let the outbound phase start from checking round 4. If a candidate
does not satisfy the differential transition in round 4, we immediately stop the check procedure. Then,
only 2128−16 = 2112 candidates will be tested for the other rounds. The complexity of the outbound phase
is 2128 × 1/11.5 11.5-round Minalpher-P computations, which is smaller than the inbound phase.

According to Iwamoto et al. [21], the minimum number of queries to satisfy such input and output
differential forms with access to a random function is 2256−(4×16)−(4×16)+1 = 2129. Because our attack
finds such a pair with 2126 computations, the attack successfully distinguishes 11.5-round Minalpher-
P from a random permutation.

We stress again that distinguishing Minalpher-P from a random permutation with complexity less
than 2128 do not give any impact to the security of Minalpher.

3.3.12 Known-key Distinguisher/Chosen-key Distinguisher

A known-key distinguisher was originally proposed by Knudsen and Rijmen against AES and block-
ciphers with Feistel network [24]. The goal is finding non-ideal properties of a randomly instantiated
block-cipher’s permutation from a random permutation. In the known-key distinguisher, the adversary
analyzes the target block-cipher under the assumption that the key value will be known to the adversary
but the adversary needs to detect non-ideal properties without knowing the exact key value. The known-
key analysis is often useful to understand the security of a block-cipher when it is used as a built-in
primitive of a hash function. In the chosen-key distinguisher [8, 43], the key input is controlled by the
adversary. The goal is detecting a particular key input and non-ideal behaviors of the instantiated block-
cipher’s permutation. It is notable that no one succeeds in formalizing the notions of the known-key and
chosen-key distinguishers so far.

The known-key and the chosen-key distinguishers are security notions for block-ciphers, while the core
part of Minalpher is the Even-Mansour construction that consists of a public permutation and two key
additions. Hence, applying those distinguishers to Minalpher does not make sense.

Indeed, constructing a known-key distinguisher is trivial for Minalpher. Let x and y be two input values
to the internal permutation P . The adversary computes their output values P (x) and P (y) and claims
that finding two input values with the input difference x⊕y and the output difference P (x)⊕P (y) is trivial
for any key for Minalpher. Actually, after the key K is randomly given to the adversary, two message
x ⊕ K and y ⊕ K satisfy the claimed property, while detecting such a pair for a random permutation
requires much more complexity than two queries.

In summary, the designers claim that Minalpher does not provide any protection against known-key
and chosen-key distinguishers. In other words, any known-key and chosen-key distinguishers never impact
to the security of Minalpher. The designers also never recommend building a cryptographic hash function
by applying any mode of operation for block-ciphers to Minalpher.

4 Features

4.1 Advantages of Minalpher

Minalpher is designed so that it can be easily used in practice.

The first goal is providing 128-bit security for both of confidentiality and integrity. This is a significant
advantage compared to many of AES based authenticated encryption schemes including AES-GCM [35,
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42] and AES-OCB [26], where the integrity is only proven to be secure up to a half of the block size of
the underlying block-cipher, i.e., only up to 64 bits.3

The second goal is reducing the security risk when Minalpher is used with some unintentional imple-
mentation. For this purpose, Minalpher provides some level of the robustness against nonce misuse and
unverified plaintext release.

The third goal is making Minalpher to be efficiently implemented in various platforms, especially in
embedded systems. The 8-bit S-box adopted in AES is not suitable for embedded systems due to its large
memory requirement. Minalpher is designed to use a 4-bit S-box. Moreover, the internal permutation
is involution so that the encryption circuit and decryption circuit are identical. These properties make
Minalpher suitable for embedded systems. When sufficient resource is available, the fully parallelizable
computation structure makes the computational speed very fast.

The fourth goal is providing a various optional functionalities such as the MAC mode, associate data
reuse, and incremental computation.

Finally, the fifth goal is a uniqueness of our design. Minalpher is designed based on the tweakable Even-
Mansour construction with an involution permutation. This makes Minalpher different from other block-
cipher based designs and sponge based designs. In this section, we explain each property of Minalpher in
details.

4.1.1 Proved Security against Nonce Misuse

Minalpher is designed to provide some level of the robustness against the nonce misuse i.e., it provides
128-bit security for integrity and confidentiality against nonce misuse.

The security claim for integrity is simple. The tag generation function of the AEAD mode is proven
to be a PRF up to O(2n/2) queries in the nonce misuse setting. The tag generation function of the MAC
mode, which does not use a nonce, is also proven to be a PRF up to O(2n/2) queries.

The security claim for confidentiality is a little bit complicated. The confidentiality of current authen-
ticated encryption schemes against nonce misuse can be classified into the following three classes.

Full PRF: A cipher is a PRF even if the same nonce is reused for the same key. The full PRF cipher is
called “offline cipher”.

Suffix PRF: A cipher is a PRF after a different message block, i.e., for two distinct messages sharing the
same prefix, M = Mfix∥M and M ′ = Mfix∥M ′, the ciphertexts of the prefix parts become identical
but those of the suffix parts are independent. The suffix PRF cipher is called “online cipher”.

Insecure: The message is recovered from the ciphertext.

The first two notions are usually regarded to be nonce misuse resistant in the crypto community.
Here, we would like to introduce a new class of misuse resistant security called block-wise PRF which

leaks information of “positions” more than a suffix PRF but leaks no other information such as message
values.

Block-wise PRF: PRF is preserved for all message blocks unless exactly the same message value has
been queried before at exactly the same block position.

The encryption function of the AEAD mode is proven to be a block-wise PRF up to O(2n/2) queries in
the nonce misuse setting. This is a strong advantage compared to AES-GCM and AES-OCB, which are
insecure in the nonce misuse setting.

4.1.2 Proved Security against Unverified Plaintext Release

Most of the current authenticated encryption schemes, during the decryption, do not allow to output the
decrypted plaintext until the verification of the tag is confirmed. It indicates that all the message blocks
must be stored in a memory to wait for the result of the tag verification. This is very hard or infeasible
to implement, especially if the input message length is long. Minalpher takes a ciphertext of the size up
to 2104 − 1 bits as input, and thus the designers do not think storing all the message blocks is feasible.

3 Moreover, Niwa et al. recently has shown that the proved security of GCM is much small than a half of the
block size, due to a huge constant factor in the security proof [44].
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To avoid this self-contradictory situation, Minalpher is designed so that the decryption results can be
released block by block before the tag verification is finished with keeping some level of the robustness.
The integrity of Minalpher mode of operation is proven to provide O(2n/2) security in the unverified
plaintext release setting.

In the crypto community, this property is sometimes called “online decryption” or “ciphertext misuse”.
However, the designers prefer to call it unverified plaintext release. This is because 1) the ability of
processing the ciphertext online is an independent issue of whether the processed plaintext can be released
immediately or must be stored until the tag is verified. 2) for a long message, cipher’s designers should
allow implementations not to store all the message blocks, in other words, the unverified plaintext release
should not be regarded as a misuse by implementors.

4.1.3 Fully Parallelizable

The scalability is an important factor for both of the software and hardware implementations. Minalpher is
designed to be fully parallelizable to achieve the scalability. By generating tweak values (or an intermediate
variable L′ ← (K∥flagm∥0n/2−s) ⊕ P (K∥flagm∥0n/2−s) and L ← (K∥flagm∥N) ⊕ P (K∥flagm∥N), the
encryption, decryption, and MAC mode can process each associated-data block and message block in
parallel.

4.1.4 MAC Mode

Some application does not require the confidentiality and only requires the integrity. Minalpher provides
the MAC mode to meet both of such demand and the demand of authenticated encryption only with
one design. At the same time, the computation time is optimized so that it can be faster than simply
computing the AEAD mode then discarding ciphertexts. It is notable that the nonce does not need to
be implemented if Minalpher is used only for the MAC mode.

4.1.5 Fixed Associated Data Reuse

Some application never changes the associated data value. In such a case, by reusing the result of processed
associated data, the computation time can be optimized. We stress that the fixed associated-data reuse
is an independent concept for the nonce reuse. Because the nonce is not used to process the associate
data, the fixed associated-data reuse is available even if the nonce changes every time.

4.1.6 Incremental Authenticated Encryption/Incremental MAC

Suppose that, for a multi-blocks message M = M0∥M1∥ · · · ∥MN−1, the corresponding ciphertext C =
C0∥C1∥ · · · ∥CN−1 and the tag T are computed under a key K and a nonce N . Also suppose that we
compute a ciphertext and a tag for a new message M ′ in which only a small fraction, e.g. one block, of
M are modified under the same key K and the nonce N . The scheme is called incremental authenticated
encryption if new C and T can be computed significantly faster than simply recomputingM ′. According to
Yasuda [52], several classes of the incremental authenticated encryption exist depending on the assumption
when new C and T are computed.

In Minalpher, new C ′
i and T ′ can be efficiently computed from Mi, Ci,M

′
i , T by using an additional

n-bit memory, where n is the permutation size (n = 256 for Minalpher). In details, every time a tag is
computed, we store a 256-bit intermediate value just before computing the last P for generating the tag.
It is obvious that C ′

i can be computed only from M ′
i (and K and N). To update the tag, we replace

the impact to the stored intermediate value from Ci with the one from C ′
i, and then compute the last

permutation to obtain the new tag T ′.
Incremental authenticated encryption can be performed only when the same pair of (K,N) is reused.

Hence, the security decreases up to the nonce misuse level. Note that the nonce reuse may not be a
problem depending on the application. For example, for storage, the ciphertext, tag, and nonce may not
be sent immediately, and thus the incremental authenticated encryption is useful to modify only a small
fraction of the message. Also note that the MAC mode does not require the nonce. Hence, Minalpher is
an incremental MAC without any security loss.
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4.1.7 Availability in Embedded Systems

Minalpher is designed so that it can be easily implemented even in 4-bit micro-controllers. Compared to
the 8-bit S-box used in AES, the 4-bit S-box in Minalpher achieves a much smaller implementation. This
is an advantage of Minalpher over AES-based authenticated encryption schemes.

4.1.8 Simplicity with Permutation Design

A permutation is a simpler primitive than a block-cipher. This feature makes the computations of Mi-
nalpher easy to understand and easy to analyze. As an example, the related-key analysis does not have to
be considered for the tweakable Even-Mansour construction part. It also simplifies the status of Minalpher
against the known-key and chosen-key distinguishers.

4.1.9 Involutive Permutation for Small Implementation

Minalpher requires to call P−1 for the decryption. Implementing P and P−1 independently requires a
large amount of memory. To avoid this problem, Minalpher was designed so that the permutation is
involutive i.e., P and P−1 are almost identical (except for round constants).

4.1.10 Byte-oriented Tweak Generations

Tweaks for each message block is often generated with a multiplication over a finite field or the Gray
code. Those operations require a bitwise implementation, and without a careful analysis, those operations
give a significantly bad impact to the performance. In Minalpher, the tweak generation is optimized so
that all operations are byte-wise, which can be computed efficiently in most of the environment.

4.1.11 Design Uniqueness

Both the mode of operation and the primitive of Minalpher are very different from ones adopted in
existing authenticated encryption schemes, such as the OCB mode, the GCM mode, the duplex sponge [3]
or AES-based block-cipher/permutation, Keccak-based permutation, stream-cipher based permutation,
and so on.

4.2 Performance in Software on High-end CPU

Minalpher can efficiently be performed on high-end CPU using so-called vperm instruction implementa-
tion. Intel’s SSSE3 instruction set includes pshufb to realize vperm, and similar instructions are available
on other architectures. vperm instruction can parallelly look-up 4-bit S-boxes. Utilizing vperm instruction,
we first need to convert the data structure from 2 nibbles to 1 nibble in each byte.

As the example, we explain the operation on Intel x86( 64). Since the bit size of the XMM register
is 128-bit, we can store at most 16 nibbles in one XMM register. In Minalpher-P , the state is expressed

by two 4 × 8 matrices A ∈
{
{0, 1}4

}4×8
and B ∈

{
{0, 1}4

}4×8
, namely, each row of two matrices has 8

nibbles. MixColumns is a linear function within each column, and the operation for A is the same so that
for B. Then we store both i-th row of A and B in one XMM register. When we have this data structure,
the state in Minalpher-P is managed using 4 XMM registers. SubNibbles, ShuffleRows, SwapMatrices and
MixColumns are simply performed on 4 XMM registers. Only XorMatrix diffuses the inside of each XMM
register, but it can efficiently perform using shift and xor.

To avoid the performance degradation from XorMatrix, we use 2-block parallel implementation which
performs 512 bits in the same time. When we use 2-block parallel implementation, the state in Minalpher-
P is managed using 8 XMM registers. Then all operations are simply performed on 8 XMM registers,
namely, we do not need to diffuse the inside of each XMM register. When YMM registers whose bit length
is 512-bit are available, we implement 1-, 2-, and 4-block parallel implementation of Minalpher-Pusing
similar idea as one for XMM registers.

Table 3 shows the performance of our implementations. We can confirm that Minalpher can perform
better than several AES-based authenticated encryption modes of operation if AES instructions are not
used.

Note that the following conditions are used to get the numbers in Table 3.
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Table 3. High-end CPU Software Performance in Cycles per Byte

Implementation Type Data Length
31B 63B 1KB 8KB 64KB

Intel Core i7-3770 (Ivy Bridge) 1-block 25.21 19.58 14.40 14.05 14.05
Intel Core i7-3770 (Ivy Bridge) 2-block 26.97 17.97 9.63 8.94 8.85

Intel Core i7-4770 (Haswell) 1-block 25.47 19.66 14.00 13.69 13.65
Intel Core i7-4770 (Haswell) 2-block 26.12 16.97 8.80 8.30 8.23
Intel Core i7-4770 (Haswell) 4-block 26.85 17.27 6.33 5.76 5.69

– Agree with SUPERCOP API.
– Only one core is used.
– Speedstep, Turboboost, and Hyperthreading technologies are disabled.
– Choose the best numbers from several trials to avoid lags caused by cache status, interrupts, and

other reasons.

4.3 Performance in Software on Low-end Microcontroller

4.3.1 Overview

In embedded environments, reducing memory size often has priority over achieving faster speed. Taking
this real-world practice in consideration, Minalpher is carefully designed so that extremely small imple-
mentation is possible on low-end microcontrollers, at the same time, without losing possibilities of high
speed implementation.

Minalpher contains a single 4-bit S-box as its non-linear component, which contributes to reducing
data memory size in low-memory embedded environments, but adjacent two S-boxes can be merged into
an 8-bit look-up table, which also gives a programmer an option for creating a fast speed code at the cost
of an increase in 240 data bytes.

Minalpher-P is a permutation with the involution property. This means that, unlike block-cipher-
based authenticated encryption algorithms, a programmer does not have to struggle with an overhead of
key scheduling part, and that a cost for treating its inversion can be negligible. We were able to implement
Minalpher-P in only 220 ROM bytes on the RL78 microcontroller.

The overall structure of Minalpher is very simple. It is comprised of a repetition of the Even-Mansour
component of the form φ ⊕ P (M ⊕ φ). An update of the tweak φ is computed as a multiplication of a
polynomial over GF (28) with a small constant polynomial, which is much simpler and faster than the
general multiplication over GF (2128) in AES-GCM, particularly on a low-end microcontroller.

Minalpher has a byte-oriented architecture. We avoided introducing bitwise shift operations in de-
signing Minalpher due to implementation reasons. Efficiency of shift instructions greatly depends on
processor hardware. Some microcontrollers do not have a shift instruction with a multiple shift count.
Another microcontroller does not support a rotate shift instruction with carry. We did not take a risk
that Minalpher might lose performance in a particular type of microcontrollers.

4.3.2 Interface and Metrics

A simple program interface is critically important in embedded software on a low-end microcontroller.
When minimizing code size is required, handling a complex interface of a target program can be a
significant overhead rather than processing its main logic. Also in practice of embedded systems, it
is common that a message must be processed separately. This is not only because its length is often
unknown or undetermined when encryption begins, but also because an interrupt that has occurred
during encryption process must be handled as quickly as possible.

Keeping a practical and usable code on embedded microcontrollers in mind, we designed our bench-
mark programs and measured their size and speed on the basis of the following policies, balancing mini-
malism, usability and security:

1. A code should be described as a subroutine callable from a high-level language.
2. A code should be able to process an intermediate one-block data and return to a caller program.
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3. A code should run in constant time, independent of secret information.
4. A code should process message padding.
5. A code should run as an application program, not using system-purpose instructions and system

memory area.
6. ROM size count should include instruction code and constant data.
7. RAM size count should include all parameters given by a caller program, internal stack and temporary

memory used in the code.

In our benchmark codes, all parameters given by a caller program and internal temporary memory
except stack are allocated in consecutive area in a callee program, and its head address is passed to a
caller program as an external variable.

4.3.3 Implementation Results

We chose the RL78 microcontroller as the evaluation platform, since it is a typical CISC processor
suitable to code size reduction. RL78 has an accumulator-based architecture consisting of eight 8-bit
general registers a,x,b,c,d,e,h,l, of which many instructions accept only a or ax as a destination. A
limited number of instructions have a 16-bit form with register pairs ax,bc,de,hl.

We hence often suffer from ‘register starvation’ on this microcontroller, which requires extra instruc-
tions and memory for saving and restoring data on an accumulator, but a big advantage of this CISC
processor is that an average code size is short due to its support of read-modify instructions. For in-
stance, the instruction xor a,[hl], – read from an address pointed by hl and xor to a –, is a one-cycle
instruction with one-byte length. This significantly contributes to code size reduction.

Our codes of Minalpher, which are a subroutine callable from C language, are written in an assembly
language and receive fixed-length parameters passed from a caller program. The parameters consist of
data to be processed, key, nonce, tag, data length and mode. The mode indicates which part of Minalpher
should be processed as follows:

Mode Function

[1] Initialization (Computation of L and L′)
[2] Associate Data Block (except last block)
[3] Associate Data Block (last block)
[4] Encryption Block (except last block)
[5] Encryption Block (last block) and Tag Generation
[6] Decryption Block (except last block)
[7] Decryption Block (last block) and Tag Verification

Table 4 shows the result of our embedded software implementation. In this table, speed of mode 3
contains two numbers, of which the first one shows that the last block is 32-byte long, and the second
one indicates otherwise. These codes process message padding inside and run in constant time for any
fixed-length associated data and plaintext/ciphertext. The small size code requires only 510-byte ROM,
and the fast speed code with less than 1300 ROM bytes runs more than five times faster, at the speed of
514 cycles/byte for long data.

Design Goal ROM (bytes) RAM (bytes) Speed (mode) (cycles)

Small Size 510 214 [1] 90,235, [2] 45,302, [3] 45,563/45,932
[4] 90,992, [5] 90,859, [6] 91,081, [7] 91,017

Fast Speed 1275 470 [1] 16,805, [2] 8,166, [3] 8,459/8,772
[4] 16,447, [5] 16,416, [6] 16,669, [7] 16,637

Table 4. Software implementation on the RL78 microcontroller.
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4.4 Performance in Hardware

4.4.1 Overview

Minalpher is designed with emphasize on performance in hardware implementations. It is characterized
by the (i) Even-Mansour like construction, (ii) nibble-oriented operations, and (iii) involutive property.

Firstly, key-related circuits can be separated from the one for permutation, thanks to the Even-
Mansour like construction. As a result, the Minalpher-P circuit can be small comparable to 128-bit
block-ciphers that usually require at least two 128-bit registers for message and key.

Secondly, the nibble-oriented operations of Minalpher-P enables efficient circuits. Notably, the 4-bit
S-boxes are advantageous to larger S-boxes in terms of both delay and circuit area [10]. In addition, the
nibble-wise permutation (i.e., SR/SR−1) enables an efficient shift-register-based architecture which is
advantageous in compact implementations.

Finally, both encryption and decryption are calculated with the same circuit because of the involutive
property. The number of additional selectors required for switching between encryption/decryption is
very small.

Another important advantage of Minalpher is its high scalability between the speed-area trade-offs.
In the latter sections, implementations in three corner cases are shown. They are the (i) high-speed core,
(ii) low-area coprocessor, and (iii) mid-range core.

4.4.2 High-speed Core

The high-speed core aims to achieve high throughput. The core works in a stand-alone manner; all the
required operations namely encryption/decryption, tweak generation/update, and tag accumulation are
involved within the core.

Firstly, a circuit for Minalpher-P is discussed. A natural way to achieve high throughput is to use
a 256-bit datapath where 1-round function is implemented as a combinatorial circuit. Fig. 48 shows a
datapath diagram of such a circuit. In the circuit, the 1-round function is calculated in 1 cycle, thus a
single 256-bit input is permuted with 18 cycles.

The high-speed core is built on top of the above 256-bit Minalpher-P circuit. The core provides
command-based interface. Both the AEAD and MAC modes are implemented by combining the com-
mands. Some registers are added for intermediate values. They are registers to store (i) 128-bit key (K),
(ii) 256-bit tweak (L), and (iii) 256-bit tag (T ). Selectors and XOR gates are added to support appropriate
data flow between the registers.

It is worth noting that higher throughput can be achieved by pipelining the Minalpher-P circuit.
With pipelining, more than two data blocks can be permuted in parallel. Thanks to the parallelizable
property of Minalpher, the pipeline can be saturated with data (i.e., operated without bubbles). For
example, 2-stage pipelining is achieved by inserting a register in the middle of the datapath. Ideally, the
throughput is doubled at the cost of the 256-bit additional register. However, a concrete evaluation of
such an architecture is not covered in this article.

4.4.3 Low-area Coprocessor

In a chip with restricted resources, it is common to implement only a fraction of the whole algorithm
as a coprocessor. Remaining parts of the algorithm are calculated by an external CPU. The low-area
coprocessor is designed with the above situation in mind.

Since the most time consuming part in Minalpher is Minalpher-P , it is natural to implement it as a
coprocessor. A compact implementation of Minalpher-P is discussed. We can employ various datapath
widths thanks to the regular structure of Minalpher-P . A good candidate for a compact implementation is
the 16-bit datapath. Fig. 49 shows the 16-bit datapath where four S-boxes and one matrix multiplication
are implemented as combinatorial logic. For an efficient data management, the order of operations are
changed from the original specification. Nibble-wise shuffling in SR/SR−1 can be implemented with
special shift registers labeled “Data manager”. With the data manager, the nibble-wise shuffling SR/SR−1

are implemented with 108 2-input selectors, that is advantageous to a straight-forward implementation
with at least 256 2-input selectors. In the 16-bit Minalpher-P circuit, a 256-bit input data is permuted
with 288 = 18× 16 cycles (i.e., 1-round/16-cycle) at maximum.
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An overall architecture of the low-area coprocessor is depicted in Fig. 49. The low-area coprocessor
can be thought as the 16-bit Minalpher-P circuit with a thin wrapper for communicating with an external
memory through a 16-bit bus. The operation latency is 304: 288 cycles for Minalpher-P and 16 additional
cycles for memory transmission.

4.4.4 Mid-range Core

The last implementation is the one for yet another requirement. There is a case where compact circuit
area is desired but an external CPU cannot provide much support. In that case, AEAD/MAC-only modes
should be supported within the core. The mid-range core is an implementation for such a case.

An overall architecture is shown in Fig. 50. The 16-bit Minalpher-P circuit is employed again. In-
terconnections between function blocks are similar to the high-speed core, however, all the datapath are
shrinked to 16-bit width for the sake of smaller circuit area. Tweak updating is conducted in a function
unit labeled “the 16-bit tweak update circuit”. That is designed to support both byte-oriented tweak
update and 16-bit-word-oriented data feeding. The function unit feeds (i) 16-bit chunks of a tweak se-
quentially when the Minalpher-P circuit is activated. In other cases, the “×y” and “×(y + 1)” tweak
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Table 5. Performance evaluation

Core mode #cycle Synthesis Area [kG]
Freq.

[MHz]

Thr'put

[Mbps]

Efficiency

[Mbps/kG]

Area 4.68 413.22 5,876.95 1,256.56

Speed 6.25 666.67 9,481.48 1,517.36

Area 2.70 421.94 375.06 139.05

Speed 3.28 689.66 613.03 187.11

Area 10.49 136.43 1,587.50 151.32

Speed 16.01 221.73 2,580.12 161.16

Area 3.71 89.21 50.52 13.63

Speed 4.35 165.29 93.62 21.51

Area 14.32 429.18 6,103.96 426.37

Speed 16.68 699.30 9,945.61 596.16

Area 2.81 438.60 369.34 131.52

Speed 3.36 666.67 561.40 167.25

Area 7.48 215.52 181.49 24.26

Speed 8.60 595.24 501.25 58.29

Minalpher

Mid-range core
--- 304

Minalpher

High-speed core
--- 18

Minalpher

Low-area coprocessor
--- 304

AES impl. 1 ENC 11

AES impl. 2 ENC 226

256-bit

Minalpher-P circuit

ENC

/DEC
18

16-bit

Minalpher-P circuit

ENC

/DEC
288

†

†

†

updates are conducted in 1 and 64 cycles, respectively. The total number of registers added is 512 bits
(i.e., 256 bits for a tweak container and 256 bits for tag accumulation).

4.4.5 Performance Evaluation

The above three cores/coprocessor are implemented with the hardware description language (HDL).
They are written in the register-transfer level (RTL) i.e., netlist-level (or cell-level) optimizations are not
applied for fair comparison. The circuits are synthesized and evaluated with Synopsys Design Compiler
Version G-2012.06-SP5 using the NanGate 45-nm CMOS standard cell library [41] at the worst condition
(NangateOpenCellLibrary slow.db). Synthesis is iterated with different performance targets. Other
synthesis attributes are the same throughout evaluations. Evaluation results are summarized in Tab. 54.
Several performance indices: circuit area (indicated by GE which is normalized by the area of a 2-way
NAND), throughput, and the efficiency defined as a throughput-area ratio are shown in the table.

Performances of two different AES implementations are also provided for comparison. They are re-
ferred to as (i) impl. 1 and (ii) impl. 2. Impl. 1 is an open-source 1 round/cycle implementation [30].

4 Note that the number of cycles indicated with daggers (†) are determined by the maximum throughput of the
underlying Minalpher-P circuits. The throughputs and efficiencies of these entries are calculated based on the
cycle counts. They can be thought as asymptotic performances.
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Impl. 2 is based on an unprotected compact implementation in a literature [38] 5. Both implementations
support encryption only, expecting uses for AES-GCM.

Firstly, the Minalpher-P circuits are compared. The 256-bit Minalpher-P circuit is about 3 times faster
and 1/2 times smaller compared to the impl. 1. That is explained by the fact that the 8-bit AES S-box
is much larger and slower than the 4-bit Minalpher S-box. The smaller number of rounds normalized by
the message length (i.e. 18-rounds / 256-bit message v.s. 10-rounds / 128-bit message) is another reason
for the better throughput. On the other hand, the 16-bit Minalpher-P circuit is about 6 times faster and
3/4 times smaller than impl. 2. The difference is due to the same reasons as the previous comparison.
In addition, there is very limited number of selectors for resource sharing as shown in Fig. 49. It is
contrast to impl. 2 where many selectors are required. As a result, we can say the Minalpher-P circuits
are advantageous to the AES circuits both on speed and area. It is also noted that Šijačić et al. reported
a smaller circuit area (2.58 kG) with their 32-bit architecture[49].

Secondly, performances of the high-speed core, low-area coprocessor, and mid-range core are discussed.
The high-speed core achieved 9.9 Gbps that is as fast as the 256-bit Minalpher-P circuit. That is

because the critical path is within the 256-bit Minalpher-P circuit. The high-speed core used 14-17 kG
that is about 3 times larger than that of the 256-bit Minalpher-P circuit. The increase is explained
by many additional registers, selectors and XORs. However, the total circuit area (14–17 kG) is still
comparable to impl. 1. As a result of the higher throughput and comparable circuit area, the efficiency
of the high-speed core is much better than that of impl. 1 (i.e., AES only).

The low-area coprocessor achieved 2.8–3.4 kGE that is comparable to the 16-bit Minalpher-P circuit.
That is because the thin wrapper consumes very limited number of gates. The smallest area of 2.81 kGE
is still smaller than that of the compact AES implementation (impl. 2). The score is even comparable to
some light-weight block-ciphers [20]. The throughput of the low-area coprocessor (369.3–561.4 Mbps) is
as fast as that of the 16-bit Minalpher-P circuit, thus it is better than that of impl. 2.

The mid-range core achieves the circuit area of 7.48 kGE. The increase from the low-area coprocessor
is about 4.7 kGE. The increase is mainly from the registers (when we estimate 1-bit register with 7–9
GE, then a 512-bit register uses 3.6–4.6 kGE). Nevertheless, the circuit area is smaller than AES impl. 1.
The mid-range core will be comparably small compared to a compact AES-GCM implementation. That is
because (i) at least 256-bit register and (ii) an integer counter and a finite-field multiplier are added to the
3.7 kGE AES circuit. In addition, the mid-range core will be advantageous in throughput over the compact
AES-GCM implementation. That is because throughput of the compact AES-GCM implementation is at
most 21.5 Mbps restricted by that of impl. 2. Finally, the efficiency of the mid-range core is better even
compared to the compact AES implementation only.

4.5 Protection against Side-Channel Attacks

Minalpher potentially be used in a hostile environment where side-channel attacks (SCA) are concerned.
A potential target is the tweak generation in AEAD mode:

L← (K∥flagm∥N)⊕ P (K∥flagm∥N).

An attacker firstly invokes multiple tweak generations (through dummy encryptions) with the fixed
key K and variable nonce Ni. Meanwhile, the attacker records the public nonce Ni and corresponding
side-channel traces in the same manner as the conventional SCA. The side-channel attacker can make
a distinguisher on hypothesis of a small chunk of K, using the recorded nonce and the traces. More
specifically, by guessing 8 bits of the key, the attacker can derive four S-box inputs at the 2nd round. The
attacker achieves successful key recovery if sufficiently many traces are provided.

Another potential target is the encryption i.e., Ci = φi ⊕ P (Mi ⊕ φi). There are two options namely
attacks using (i) a single long message and (ii) multiple short messages. Feasibility of the attack under
the case (i) is remained open. Under the case (ii), on the other hand, the attacker can recover the tweak
φi with SCA under the fixed-nonce condition. However, since the recovered tweak φi is nonce-dependent,
thus these approaches will be considered less attractive compared to the previous attack on the tweak
generation.

5 The gate counts 3.7 kGE of the impl. 1 is larger than the one in the original paper by Moradi et al. [38] (2.4
kGE) . That is because netlist-level optimizations are not applied. We stress that all the other implementations
are implemented under the same restriction.
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In such cases, Minalpher-P should be protected against SCA. Since many of the conventional SCA
countermeasures are independent of algorithms, thus they can easily be applied to the Minalpher-P .
Notably, the small 4-bit S-box is preferable to some countermeasures (e.g., gate-level ones). An exception
is the threshold implementation (TI) [29] in which the number of shares (i.e., efficiency of the counter-
measure) is dependent to an S-box specification. Therefore, some recent algorithm propositions provide
notes on the possibilities of efficient TI realizations [4, 7, 48]. For Minalpher-P , the most efficient 3-share
TI can be employed. That is based on the fact that the 3-share TI is available for any 4× 4 S-boxes [29].
More specifically, the Minalpher S-box is an element of the affine-equivalent class G4 [32]. Therefore, the
S-box can be decomposed into a 3-stage vectorial boolean functions where their algebraic degrees are 2.

5 Design Rationale

This section explains the design rationale of Minalpher. The designers have not hidden any weaknesses
in this cipher.

5.1 Design Rationale for Mode

Minalpher is designed to be block-wise priv-secure in the nonce reuse setting and to be auth-secure in
the unverified plaintext release and nonce reuse setting. In addition, Minalpher is designed to be fully
parallelizable.

To ensure the auth-security, we employ the Enc-then-MAC approach. This approach ensures the auth-
security if the tag verification is a secure MAC. Thus, we employ PMAC [9] as the MAC, which is fully
parallelizable.

To ensure the block-wise priv-security, the encryption of Minalpher employs the encryption part of
OCB [45], while realizes the security and is fully parallelizable.

For the underlying primitive, Minalpher uses a permutation, while OCB and PMAC use a block-cipher.
To realize a tweakable block-cipher using a permutation, we adopt the tweakable Even-Mansour [27, 28].
It is based on Even-Mansour [18] with a single key. The single-key Even-Mansour is also studied by
Dunkelman et al. [17]. Thanks to the Even-Mansour like construction, tweakable Even-Mansour is secure
against generic attacks as shown in this document and by others [13, 27, 28, 37].

5.1.1 Choice of Tweak Updating Function

Several modes of operation use offset. For example, OCB3 [26] uses γiL and OCB2 [46] uses xiL, where
L is a secret value and γi is an i-th element of Gray code. The multiplication in the offset computation
is done in GF(2n) and the polynomial representation is used to show an element in GF(2n). Considering
the implementation aspect, γiL requires a precomputation table to realize an efficient implementation,
and xiL requires a bit-level shift which is costly for most software implementation and is not endian
neutral for large words, e.g., 128-bit word. To overcome these problems, we adopt a successive extension,
GF(2256) ∼= (GF(2)[x]/(f(x)))[y]/(g(y)), where f and g are an irreducible polynomial in GF(2) and
GF(28), respectively, and deg f = 8 and deg g = 256/deg f = 32.

To realize an efficient implementation, we adopt the following conditions.

1. The number of terms in g(y) should be as small as possible.
2. coefficients of g(y) should be in {0, 1, x} or {0, 1, x−1}.
3. deg(g(y)− y32) should be as small as possible.

Since the characteristic of the field is 2, there is no 2-term irreducible polynomial with degree 32. There
is no 3-term irreducible polynomial satisfying the above condition even if we try all possible f(x). For
4-term irreducible polynomial, there are many candidates, and the smallest deg(g(y)− y32) is 3, and we
try to choose g from these candidates. Among all these candidates, only one coefficient is x or x−1 and
other coefficients are 0 or 1. Thus, we decide that coefficient x or x−1 should be located to the constant
term considering the efficiency reason. Moreover, we consider that the multiplication by x is easier than
by x−1 on some platform, and the number of terms of f is also better to be as small as possible. Finally,
we get a following unique candidate.

g(y) = y32 + y3 + y2 + x

f(x) = x8 + x7 + x5 + x+ 1
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Fortunately, the order of the groups generated by y and y+ 1 is larger than 2128.

#⟨y⟩ = (2256 − 1)/3

#⟨y+ 1⟩ = 2256 − 1

Tweakable Even-Mansour uses the elements represented by yi(y+ 1)j for offset, where (i, j) ∈ Z × Z3 \
{(0, 0)} and Z ⊂ Z2104 . From the properties listed above, yi(y+ 1)j ̸= 1 and yi(y+ 1)j ̸= yi

′
(y+ 1)j

′
for

any (i, j), (i′, j′) ∈ Z × Z3 \ {(0, 0)} such that (i, j) ̸= (i′, j′).
For your curiosity, we confirmed the following condition.

y = (y+ 1)c77

c77 = 32 × 11× 41× p73

p73 = 7615607328396267414266342365269697347245710840432902053215386708937089269 (prime)

Using the polynomials, we can compute a multiplication by y which is used in an offset as follows.

(A31y
31 +A30y

30 +A29y
29 + · · ·+A3y

3 +A2y
2 +A1y+A0)× y

= A30y
31 +A29y

30 + · · ·+A3y
4 + (A2 +A31)y

3 + (A1 +A31)y
2 +A0y+A31x

As we can see, this multiplication can be done using a left shift with one byte and two byte-wise XOR
and one multiplication by x in GF(28). This is illustrated in Fig. 51. Similar to above computation, we

Fig. 51. Multiplication by y

can compute a multiplication by x as follows.

(a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0)× x

= (a6 + a7)x
7 + a5x

6 + (a4 + a7)x
5 + a3x

4 + a2x
3 + a1x

2 + (a0 + a7)x+ a7

Assume A as an 8-bit string, there is a well-known equation to compute a multiplication by x.

A× x = (A≪1)⊕ (msb(A)0xA3)

Note that A≪1 is 1-bit left shift of A and msb(A) is the most significant bit of A and 0x means the
hexadecimal representation.

5.2 Design Rationale for Minalpher-P

In this section, we explain the design rationale for Minalpher-P . Minalpher-P has the Substitution-
Permutation Network, and the intermediate states are expressed using matrices like AES. Minalpher-P is
designed to achieve high security and efficiency.

5.2.1 Structure

We explain that Minalpher-P is an involution permutation. Minalpher-P consists of the S-function, the
T -function and the M -function. In order to design the involution permutation, we design those functions
to satisfy the following criteria:
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– Each of the S-function, the T -function and the M -function is involutive.
– The S-function and the T -function are commutative.

The transformation from input to output in Minalpher-P can be described as follows, where ST represents
the application of the S-function and the T -function in this order, M represents the application of the
M -function, and ⊕E(i− 1) represents the XOR of the round constant:

IN→ ST →M → ⊕E(0)→ ST → · · · →M → ⊕E(16)→ ST → OUT.

From the second criterion, the order of S and T can be exchanged. Since the M -function is linear, the
order of M and ⊕E(i− 1) can be exchanged by applying M to E(i− 1). Then, the transformation from
output to input in Minalpher-P can be described as follows:

IN← TS ← ⊕M(E(0))←M ← TS ← · · · ← ⊕M(E(16))←M ← TS ← OUT

From the first criterion, each of the S-function, the T -function and the M -function is involutive. Thus,
the forward operation and the inverse operation have the same operation except for the values of round
constant. For the forward operation, E(i− 1) is used in the i-th round, while, for the inverse operation,
M(E(17− i)) is used in the i-th round.

When the S-function is a nibble-wise involution S-box and the T -function is a nibble-wise position
swap, the S-function and T -function are commutative.

5.2.2 S-function

5.2.2.1 4-bit S-box versus 8-bit S-box

To be efficient for both of lightweight implementations and fast implementation, we use the 4-bit S-box. To
be lightweight, the 4-bit S-box is more advantageous than the 8-bit S-box. Moreover, for implementations
on a high-end platform, e.g., the x86( 64) processor, we can parallelly get 16 results calculated from
the 4-bit S-box. This shows that the 4-bit S-box can be suitable for fast implementations on a high-end
platform.

5.2.2.2 4-bit Involution S-box

For security reasons, the 4-bit S-box fulfills the following criteria:

1. The probability of the maximum differential characteristic is 2−2, which is optimal.
2. The probability of the maximum linear characteristic is 2−2, which is optimal.
3. Each of the 15 non-zero component functions has algebraic degree 3.
4. For all i (̸= 0), s(i)⊕ i ̸= s(i) is satisfied.

120, 960 S-boxes fulfill these criteria, and all of these S-boxes are affine equivalent.

5.2.3 T -function

The T -function is designed to consist of a nibble-wise position movement function ShuffleRows (SR) and
its inverse function SR−1 as follows:

T (A∥B) = SR−1(B)∥SR(A).

For any nibble-wise position movement function SR, the T -function becomes involutive. The input and
output of SR and SR−1 are expressed by using a 4 × 8 matrix whose elements are nibble values. SR
consists of 4 different nibble-wise position movement functions, and these 4 functions are applied to each
row. Let SRi be a nibble-wise position movement function in the i-th row. From efficiency and security
reasons, we have several criteria.

For efficiency reasons, SR fulfills the following two criteria:

1. For 4 indices i, j, k and ℓ, SRi and SRj are inverse functions of SRk and SRℓ, respectively.
2. In SRi, 8 nibbles in each row of the state are regarded as 4 bytes. Then, 3 out of 4 bytes are moved

only in byte-wise. The remaining 1 byte is first moved in byte-wise, and the first half nibble of the
byte is swapped with the latter half nibble of the byte.
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The first criterion is significant for reducing the code size and the table size. The second criterion is
significant for fast implementations on microcontrollers.

For security reasons, SR fulfills the following two criteria:

3. For any 8-nibble difference ∆x ∈ {{0, 1}4}8 that 1 nibble is active and 7 nibbles are nonactive,
SRi(∆x), SRj(∆x), SR−1

i (∆x) and SR−1
j (∆x) have different values.

4. Let X, Y and Z be
{
{0, 1}4

}4×8
such that Y = SR ◦MC(X) and Z = SR(X). For any X whose

number of active columns is at least 2, the sum of the number of active columns in Y and Z is at
least 5.

Criterion 4 depends on the specification of MC. Then we first determine MC from the efficiency and the
simplicity, and search for SR to satisfy the criterion 4. By fulfilling four criteria, the minimum number
of active S-boxes of 4-round Minalpher-P is ensured to be 22.

5.2.4 M-function

The M -function consists of XorMatrix (XM) and MixColumns (MC). The input data to the M -function
is two half states A and B. In the XM operation, the half state B is XORed with the half state A. In the
MC operation, 4 nibble values in the same column in the half state A and B are diffused. For efficiency,
we use a simple binary matrix whose branch number is 4 so that the operation can be implemented only
by XOR operations. The matrix is as follows: 

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 .

Note that this matrix is involutive.

5.2.5 Round Constant

E(i − 1) is used as the i-th round constant for forward processing, and M(E(17 − i)) is used as the
i-th round constant for inverse processing. When E(i) is expressed by 0∥RCi, M(E(i)) is expressed by
0∥MC(RCi). When a column of RCi is expressed as [a, a ⊕ 1, a ⊕ 2, a ⊕ 3] for any a ∈ {0, 1}4, the
multiplication by the MC matrix is expressed as follows:

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

×


a
a⊕ 1
a⊕ 2
a⊕ 3

 =


a

a⊕ 1
a⊕ 2
a⊕ 3

⊕

2
2
2
2

 .

This multiplication is very simple, i.e., the conversion from E(i) to M(E(i)) can be performed only by
adding a constant vector. To prevent the slide attack, we generate a ∈ {0, 1}4 from the round number.

6 Intellectual Property

We are not applying for any patent about Minalpher. To the best of our knowledge, Minalpher does not
infringe upon the rights on other designs. If any of this information changes, the submitters will promptly
(and within at most one month) announce these changes on the crypto-competitions mailing list.”

7 Consent

The submitters hereby consent to all decisions of the CAESAR selection committee regarding the selec-
tion or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist,
a member of the final portfolio, or any other designation provided by the committee. The submitters
understand that the committee will not comment on the algorithms, except that for each selected algo-
rithm the committee will simply cite the previously published analyses that led to the selection of the
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algorithm. The submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not
enough analysis was available at the time of the committee decision. The submitters acknowledge that
the committee decisions reflect the collective expert judgments of the committee members and are not
subject to appeal. The submitters understand that if they disagree with published analyses then they
are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee
decisions. The submitters understand that this statement is required as a condition of consideration of
this submission by the CAESAR selection committee.
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