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Chapter 1

Specification

1.1 Parameters

Ascon is a family of authenticated encryption designs Ascona,b-k-r. The family members
are parametrized by the key length k ≤ 128 bits, the rate r and internal round numbers a
and b. Each design specifies an authenticated encryption algorithm Ea,b,k,r and a decryption
algorithm Da,b,k,r.

The inputs for the authenticated encryption procedure Ea,b,k,r are the plaintext P ,
associated data A, a secret key K with k bits and a public message number (nonce) N
with k bits. No secret message number is used, i.e., its length is 0 bits. The output of the
authenticated encryption procedure is an authenticated ciphertext C of exactly the same
length as the plaintext P , and an authentication tag T of size k bits, which authenticates
both A and P :

Ea,b,k,r(K,N,A, P ) = (C, T )

The decryption and verification procedure Da,b,k,r takes as input the key K, nonce N ,
associated data A, ciphertext C and tag T , and outputs the plaintext P if the verification
of the tag is correct or ⊥ if the verification of the tag fails:

Da,b,k,r(K,N,A,C, T ) ∈ {P,⊥}

1.2 Recommended Parameter Sets

Tunable parameters include the key size k, the rate r, as well as the number of rounds a
for the initialization and finalization permutation pa, and the number of rounds b for the
intermediate permutation pb processing the associated data and plaintext. Table 1 contains
our recommended parameter configurations. The list is sorted by priority, i.e., the primary
recommendation is Ascon-128 and the secondary recommendation is Ascon-128a.

Table 1: Recommended parameter configurations for Ascon.

Name Algorithm
Bit size of Rounds

key nonce tag data block pa pb

Ascon-128 Ascon12,6-128-64 128 128 128 64 12 6
Ascon-128a Ascon12,8-128-128 128 128 128 128 12 8
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1.3 Notation

The following table specifies the notation and symbols used in this document.

x ∈ {0, 1}k Bitstring x of length k (variable if k = ∗)
0k, 0∗ Bitstring of k bits or variable length, all 0
|x| Length of the bitstring x in bits
bxck Bitstring x truncated to the first (most significant) k bits

dxek Bitstring x truncated to the last (least significant) k bits
x⊕ y Xor of bitstrings x and y
x ‖ y Concatenation of bitstrings x and y

S The 320-bit state S of the sponge construction
Sr, Sc The r-bit rate and c-bit capacity part of the state S
x0, . . . , x4 The five 64-bit words of the state S
K,N, T Secret key K, nonce N , tag T , all of k ≤ 128 bits
P,C,A Plaintext P , ciphertext C, associated data A (in blocks Pi, Ci, Ai)
⊥ Error, verification of authenticated ciphertext failed
p, pa, pb Permutations pa, pb consisting of a, b update rounds p, respectively

1.4 Mode of Operation

The mode of operation of Ascon is based on duplex sponge modes like MonkeyDuplex [13],
but uses a stronger keyed initialization and keyed finalization function. The core permu-
tations pa and pb operate on a sponge state S of size 320 bits, with a rate of r bits and
a capacity of c = 320 − r bits. For a more convenient notation, the rate and capacity
parts of the state S are denoted by Sr and Sc, respectively. The encryption and decryption
operations are illustrated in Figure 1a and Figure 1b and specified in Algorithm 1.
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Figure 1: Ascon’s mode of operation.
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Algorithm 1: Authenticated encryption and decryption procedures

Authenticated Encryption Ea,b,k,r(K,N,A, P )

Input: key K ∈ {0, 1}k, k ≤ 128,
nonce N ∈ {0, 1}k,
plaintext P ∈ {0, 1}∗,
associated data A ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Initialization
c← 320− r
P1 . . . Pt ← padr(P )
` = |P | mod r
A1 . . . As ← pad∗

r(A)
S ← IV ‖K ‖N
S ← pa(S)⊕ (0320−k ‖K)

Processing Associated Data
for i = 1, . . . , s do

S ← pb((Sr ⊕Ai) ‖Sc)
S ← S ⊕ (0319 ‖ 1)

Processing Plaintext
for i = 1, . . . , t− 1 do

Sr ← Sr ⊕ Pi

Ci ← Sr

S ← pb(S)
Sr ← Sr ⊕ Pt

Ct ← bSrc`
Finalization

S ← pa(S ⊕ (0r ‖K ‖ 0c−k))
T ← dSek ⊕K
return C1 ‖ . . . ‖Ct, T

Verified Decryption Da,b,k,r(K,N,A,C, T )

Input: key K ∈ {0, 1}k, k ≤ 128,
nonce N ∈ {0, 1}k,
ciphertext C ∈ {0, 1}∗,
associated data A ∈ {0, 1}∗,
tag T ∈ {0, 1}k

Output: plaintext P ∈ {0, 1}∗ or ⊥

Initialization
c← 320− r

` = |C| mod r
A1 . . . As ← pad∗

r(A)
S ← IV ‖K ‖N
S ← pa(S)⊕ (0320−k ‖K)

Processing Associated Data
for i = 1, . . . , s do

S ← pb((Sr ⊕Ai) ‖Sc)
S ← S ⊕ (0319 ‖ 1)

Processing Ciphertext
for i = 1, . . . , t− 1 do

Pi ← Sr ⊕ Ci

S ← Ci ‖Sc

S ← pb(S)
Pt ← bSrc` ⊕ Ct

Sr ← Ct ‖(dSrer−` ⊕ (1 ‖ 0r−1−`))
Finalization

S ← pa(S ⊕ (0r ‖K ‖ 0c−k))
T ∗ ← dSek ⊕K
if T = T ∗ return P1 ‖ . . . ‖Pt

else return ⊥

1.4.1 Padding

Ascon has a message block size of r bits. The padding process appends a single 1 and the
smallest number of 0s to the plaintext P such that the length of the padded plaintext is a
multiple of r bits. The resulting padded plaintext is split into t blocks of r bits: P1‖...‖Pt.
The same padding process is applied to split the associated data A into s blocks of r bits:
A1‖...‖As, except if the length of the associated data A is zero. In this case, no padding is
applied and no associated data is processed:

P1, . . . , Pt ← padr(P ) = r-bit blocks of P ‖ 1 ‖ 0r−1−(|P |mod r)

A1, . . . , As ← pad∗r(A) =

{
r-bit blocks of A ‖ 1 ‖ 0r−1−(|A|mod r) if |A| > 0

∅ if |A| = 0

1.4.2 Initialization

The 320-bit initial state of Ascon is formed by the secret key K and nonce N (both k
bits), as well as an IV specifying the algorithm (including the key size k, the rate r, the
initialization and finalization round number a, and the intermediate round number b, each
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written as an 8-bit integer):

IV = k ‖ r ‖ a ‖ b ‖ 0288−2k =

{
80400c0600000000 for Ascon-128

80800c0800000000 for Ascon-128a

S = IV ‖K ‖N

In the initialization, a rounds of the round transformation p are applied to the initial state,
followed by an xor of the secret key K:

S ← pa(S)⊕ (0320−k ‖K)

1.4.3 Processing Associated Data

Each (padded) associated data block Ai with i = 1, . . . , s is processed as follows. The
block Ai is xored to the first r bits Sr of the internal state S. Then, the whole state S is
transformed by the permutation pb using b rounds:

S ← pb((Sr ⊕Ai) ‖Sc), 1 ≤ i ≤ s

After the last associated data block has been processed (also if A = ∅), a single-bit domain
separation constant is xored to the internal state S:

S ← S ⊕ (0319 ‖ 1)

1.4.4 Processing Plaintext/Ciphertext

Encryption. In each iteration, one (padded) plaintext block Pi with i = 1, ..., t is xored
to the first r bits Sr of the internal state S, followed by the extraction of one ciphertext
block Ci. For each block except the last one, the whole internal state S is transformed by
the permutation pb using b rounds:

Ci ← Sr ⊕ Pi

S ←
{
pb(Ci ‖Sc) if 1 ≤ i < t,

Ci ‖Sc if 1 ≤ i = t.

The last ciphertext block is truncated to the unpadded length of the last plaintext block-
fragment, ` = |P | mod r:

Ct ← bCtc` .
Thus, the length of the last ciphertext block Ct is between 0 and r − 1 bits, and the total
length of the ciphertext C is exactly the same as for the original plaintext P .

Decryption. In each iteration except the last one, the plaintext block Pi is computed by
xoring the ciphertext block Ci with the first r bits Sr of the internal state. Then, the first
r bits of the internal state, Sr, are replaced by Ci. Finally, for each ciphertext block except
the last one, the internal state is transformed by b rounds of the permutation pb:

Pi ← Sr ⊕ Ci

S ← pb(Ci ‖Sc), 1 ≤ i < t.

For the last, truncated ciphertext block with 0 ≤ ` < r bits, the procedure differs slightly:

Pt ← bSrc` ⊕ Ct

S ← Ct ‖(dSrer−` ⊕ (1 ‖ 0r−1−`)) ‖Sc.
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1.4.5 Finalization

In the finalization, the secret keyK is xored to the internal state and the state is transformed
by the permutation pa using a rounds. The tag T consists of the last k bits of the state
xored with the key K:

S ← pa(S ⊕ (0r ‖K ‖ 0c−k))

T ← dSek ⊕K
The encryption algorithm returns the tag T together with the ciphertext C1, . . . , Ct. The de-
cryption algorithm returns the plaintext P1, . . . , Pt only if the calculated tag value matches
the received tag value.

1.5 The Permutations

The main components of Ascon are two 320-bit permutations pa (used in the initialization
and finalization) and pb (used during data processing). The permutations iteratively apply
an SPN-based round transformation p that in turn consists of three subtransformations pC ,
pS and pL:

p = pL ◦ pS ◦ pC .
pa and pb differ only in the number of rounds. The number of rounds a for initialization
and finalization, and the number of rounds b for intermediate rounds are tunable security
parameters.

For the description and application of the round transformations, the 320-bit state S is
split into five 64-bit registers words xi, as illustrated in Figure 2:

S = Sr ‖Sc = x0 ‖x1 ‖x2 ‖x3 ‖x4.

1.5.1 Addition of Constants

Each round p starts with the constant-addition operation pC which adds a round constants
cr to the register word x2 of the state S:

x2 ← x2 ⊕ cr
Ascon uses the round constants cr for pa and ca−b+r for pb. The values for the first round
constants as required for the recommended number of rounds are given in Table 2.

x0
x1
x2
x3
x4

Figure 2: The register words of the 320-bit state S, and position of the constant addition.

Table 2: The round constants used in each round of pa and pb.

p12 p8 p6 Constant p12 p8 p6 Constant

0 000000000000000000f0 6 2 0 00000000000000000096

1 000000000000000000e1 7 3 1 00000000000000000087

2 000000000000000000d2 8 4 2 00000000000000000078

3 000000000000000000c3 9 5 3 00000000000000000069

4 0 000000000000000000b4 10 6 4 0000000000000000005a

5 1 000000000000000000a5 11 7 5 0000000000000000004b

6



1.5.2 Substitution Layer

In the substitution layer pS , 64 parallel applications of the 5-bit S-box S(x) defined in
Table 3 are performed on the 320-bit state. As illustrated in Figure 3, the S-box is applied
to each bit-slice of the five registers x0, ..., x4, where x0 acts as the MSB and x4 as the LSB
of the S-box.

x0
x1
x2
x3
x4

Figure 3: The substitution layer of Ascon applies a 5-bit S-box S(x) to the state.

Table 3: The 5-bit S-box S(x) of Ascon.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

The S-box will typically be implemented in its bitsliced form, with operations performed
on the entire 64-bit words. Figure 4 illustrates a bitsliced computation of the S-box values.
This sequence of bitsliced instructions is well-suited for pipelining, as the implementation
with five temporary registers t0, . . . , t4 in Figure 5 shows.
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Figure 4: Bitsliced implementation of the 5-bit S-box S(x).

x0 ^= x4; x4 ^= x3; x2 ^= x1;

t0 = x0; t1 = x1; t2 = x2; t3 = x3; t4 = x4;

t0 =~ t0; t1 =~ t1; t2 =~ t2; t3 =~ t3; t4 =~ t4;

t0 &= x1; t1 &= x2; t2 &= x3; t3 &= x4; t4 &= x0;

x0 ^= t1; x1 ^= t2; x2 ^= t3; x3 ^= t4; x4 ^= t0;

x1 ^= x0; x0 ^= x4; x3 ^= x2; x2 =~ x2;

Figure 5: Pipelinable instructions for bitsliced implementation of the 5-bit S-box S(x).
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1.5.3 Linear Diffusion Layer

The linear diffusion layer pL of Ascon is used to provide diffusion within each of the five
64-bit register words xi of the 320-bit state S, as illustrated in Figure 6. We apply a linear
function Σ0(x0), . . . ,Σ4(x4) to each word xi separately,

xi ← Σi(xi), 0 ≤ i ≤ 4,

where the functions Σi are defined as follows:

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

x0
x1
x2
x3
x4

Figure 6: The linear diffusion layer of Ascon mixes bits within words using Σi(xi).
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Chapter 2

Security Claims

Table 4: Security claims for recommended parameter configurations of Ascon.

Requirement
Security in bits

Ascon-128 Ascon-128a

Confidentiality of plaintext 128 128
Integrity of plaintext 128 128
Integrity of associated data 128 128
Integrity of public message number 128 128

There is no secret message number. The public message number is a nonce, i.e., the
security claims are void if two plaintexts are encrypted under the same key and the same
public message number. In particular, reusing the nonce for two messages allows to detect
plaintexts with common prefixes and to deduce the xor difference of the first block pair
that differs between the two messages. Except for the single-use requirement, there are no
constraints on the choice of message numbers.

The decryption algorithm may only release the decrypted plaintext after verification of
the final tag. Similar to GCM, a system or protocol implementing the algorithm should
monitor and, if necessary, limit the number of tag verification failures per key. After reaching
this limit, the decryption algorithm rejects all tags. Such a limit is not required for the
security claims above, but may be reasonable in practice.

The number of processed plaintext and associated data blocks protected by the encryp-
tion algorithm is limited to 264 blocks per key. This requirement also imposes a message
length limit of 264 blocks, which corresponds to 267 (Ascon-128) or 268 (Ascon-128a)
bytes (for plaintext and associated data).

As for most encryption algorithms, the ciphertext length leaks the plaintext length since
the two lengths are equal (excluding the tag length). If the plaintext length is confidential,
users must compensate this by padding their plaintexts.

We emphasize that we do not require ideal properties for the permutations pa, pb. Non-
random properties of the permutations pa, pb are known and do not automatically afflict
the claimed security properties of the entire encryption algorithm.
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Chapter 3

Features

Several features of the Ascon design help to allow its lightweight implementation char-
acteristics in both hardware and software while still offering good performance on both
platforms. In particular, Ascon was designed to allow efficient implementation of side-
channel resistance features. Ascon is not intended to compete with very fast parallel
authenticated encryption schemes on unconstrained devices. However, Ascon has been
designed to use a minimum number of instructions while still maximizing the parallelism of
these instructions. Therefore, Ascon is best used where size and implementation security
matters, but good performance is also required.

3.1 Properties of Ascon

• Lightweight and Flexible in Hardware. Current implementation results show
that Ascon provides excellent implementation characteristics in terms of size and
speed. Balanced round-based CAESAR API implementations of Ascon-128 and
Ascon-128a achieve a throughput of 4.9–7.3 Gbps using less than 10 kGE. Due to the
small state size and the elegant structure of Ascon’s round function, it is additionally
possible to provide hardware implementations that are trimmed towards providing
either a smaller area (e.g., 2.5 kGE [17]) or higher speed (e.g., 13.2 Gbps [17]).

• Bitsliced in Software. Ascon is designed to facilitate bitsliced software imple-
mentations. The internal permutation is based on very simple operations that are
intuitively defined in terms of simple word-wise (64-bit) standard operations. These
operations are also well-suited for processors with smaller word sizes, and can take
advantage of pipelining and parallelization features of high-end processors. In par-
ticular, the substitution and linear layers have been specifically designed to support
high instruction parallelism in bitsliced implementations. Up to 5 instructions can
be carried out in parallel in nearly every phase of the permutation. In addition, the
rather small state of Ascon allows to hold the whole state within the CPU’s registers
for a wide range of platforms reducing reloads from the cache to a minimum.

• Easy Integration of Side-Channel Countermeasures. Ascon can be imple-
mented efficiently on platforms and applications where side-channel resistance is im-
portant. The very efficient bitsliced implementation of the S-boxes prevents cache-
timing attacks, since no look-up tables are required. Furthermore, the low algebraic
degree of the S-box facilitates first- and higher-order protection using masking or
sharing-based side-channel countermeasures such as threshold implementations [22]
and consolidated masking schemes [12,23]. These countermeasures have been applied
to the S-box of Keccak in [5, 10,20] and similar results can be expected for Ascon.
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• Balanced Design. While there is arguably a need for ciphers designed for corner
cases, such as extremely lightweight designs with very low area footprints, or ciphers
designed to provide very high speed on specific software platforms, we follow a more
balanced design approach. In particular, Ascon has been designed to provide a
lightweight implementation characteristics in both hardware and software while still
offering good performance on both. Hence, Ascon is highly suited for scenarios where
many lightweight devices communicate with a back-end server, a typical use case in
the Internet of Things (IoT).

• Online. The Ascon cipher is online and can encrypt plaintext blocks before subse-
quent plaintexts or the plaintext length are known. The same holds for decryption,
which decrypts ciphertext blocks online in the order they were computed during en-
cryption.

• Single-Pass. For both encryption and decryption, just one pass over the data is
required.

• Inverse-Free. Ascon does not need to implement any inverse operations. In other
words, the permutations pa and pb are only evaluated in one direction for both en-
cryption and decryption, which significantly reduces the area overhead for implemen-
tations.

• High Key Agility. Ascon neither needs a key schedule, nor expands the key by
any other means. Therefore, there are no hidden setup costs when the key is changed.

• Simplicity. Ascon is intuitively defined on 64-bit words using only the common
bitwise Boolean functions AND, OR, XOR, NOT, and ROT (bitwise rotation). This
significantly reduces the effort of implementing the algorithm on new target platforms.

• Robustness. Ascon is a nonce-based scheme. As with any authenticated encryption
scheme, repeating nonces is a misuse setting, and implies a loss of semantic security.
Since Ascon is based on the MonkeyDuplex construction [13], it inherits many of its
properties in misuse settings. For example, repeating the nonce once for two different
messages reveals the difference between the first differing plaintext blocks. If nonces
are reused excessively or many plaintexts for unverified tags are released, structural
attacks may lead to recovery of the internal state. However, compared to other sponge-
based constructions, Ascon provides better robustness in case of a potential state
recovery, since both initialization and finalization are keyed additionally. A recovery
of the secret state during data processing does not directly lead to a key-recovery or
universal forgery.

3.2 CAESAR Use Cases

At the end of Round 2, the committee identified three use cases for authenticated encryp-
tion schemes [24]: (1) lightweight applications, (2) high-performance applications, and (3)
defense in depth in misuse scenarios. Below, we restate the relevant profile for these use
cases, and discuss which use cases Ascon is most suitable for.

Ascon follows a balanced design approach, instead of optimizing for only one particular
platform or use case. For this reason, Ascon satisfies the requirements for both use cases
1 and 2, and provides a number of additional features that support efficient and secure
implementations in a variety of applications. For instance, Ascon is designed for small
implementations in hardware that can be easily protected against side-channel attacks,
which is essential for use case 1. At the same time, Ascon can be implemented efficiently in
software, especially on 64-bit platforms, providing constant-time bitsliced implementations
as required by use case 2. We believe that ciphers which operate efficiently and securely in
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both of these use cases will be of rising importance in the future. A typical example for such
dual environments is the Internet of Things (IoT), where a large number of very constrained
devices need to communicate efficiently with high-performance back-end servers. We justify
the suitability of Ascon for these use cases in detail below.

In summary, both Ascon-128 and Ascon-128a are recommended for use cases 1 and 2,
in this order. Since the performance constraints of use case 1 are often more critical than
those of use case 2, this is the primary focus of our design. Ascon is not intended as a
misuse-resistant design for use case 3, but its novel mode of operation nevertheless offers
some robustness in misuse settings.

Table 5: Recommended use cases for Ascon.

Algorithm Security level Use cases

Ascon-128 128-bit 1 and 2
Ascon-128a 128-bit 1 and 2

Use Case 1: Lightweight Applications

This is the primary recommended use case of Ascon. The following properties qualify
Ascon for lightweight applications.

• Small hardware area. Ascon’s small state and simple round function are well-
suited for small implementations, without compromising on the full security of 128
bits. Existing lightweight implementations are as small as 2.6 kGE [17]. The round-
based implementations of both Ascon variants are smaller than 10 kGE and still
offer a throughput of 4.9–7.3 Gbps, which is already sufficient to encrypt a Gigabit
Ethernet connection.

• Efficiency in hardware. Ascon is not only small and fast, but can also be effi-
ciently implemented on a wide variety of platforms [16]. It allows many trade-offs
between throughput, latency, gate count, power consumption, etc. [17]. Compari-
son of implementation results in [16] show that throughput per area of both Ascon
variants is very good compared to many other CAESAR candidates.

• Natural side-channel protection. This is one of the primary design goals of
Ascon. For protected hardware implementations, it is important that the S-box is
easy to protect. Ascon’s S-box has a low algebraic degree of 2 and a low number of
Boolean multiplications, which is well-suited for threshold implementations and sim-
ilar protection approaches. Also, since Ascon uses Keccak’s S-box core, it benefits
from existing efficient protected implementations [5]. Several threshold implementa-
tions of Ascon have already been proposed, ranging from small (less than 8 kGE [17])
to high-speed (9 Gbps [17]) use cases.

• Limited damage in misuse settings. Ascon is a nonce-based scheme. As with
any authenticated encryption scheme, repeating nonces is a misuse setting, and im-
plies a loss of semantic security. But compared to other sponge-based constructions,
Ascon provides better robustness in case of a potential state recovery, since both
initialization and finalization are keyed additionally. A recovery of the secret state
during data processing does not directly lead to a key-recovery or universal forgery.
Furthermore, Ascon’s mode is compatible with alternative decryption interfaces for
secure implementations in memory-constrained settings [1].
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• Low overhead for short messages. Ascon is among the fastest CAESAR can-
didates for short messages according to current software benchmarking results [3, 4],
since its initialization and finalization overhead is much smaller compared to most
block cipher based constructions, stream ciphers, or large-state sponges. For instance,
if the associated data is empty, no additional permutation calls are necessary. As-
con’s small rate of 8 or 16 bytes is ideally suited for short messages that are typical
for these applications.

Use Case 2: High-Performance Applications

This is the secondary recommended use case of Ascon.

• Efficiency on modern CPUs. The bitsliced design of Ascon using simple in-
structions makes it easy to implement efficiently on a wide range of platforms. The
native word-size of Ascon is 64 bits, which make it especially efficient on high-end
CPUs. Up to 5 instructions can be carried out in parallel in nearly every step of the
permutation which makes Ascon fast in software on 64-bit as well as 32-bit CPUs.

• Efficiency on dedicated hardware. The linear and nonlinear layer in Ascon are
designed to use a small number of simple bitwise Boolean functions. Hence, it is easy
to build dedicated hardware or reuse SIMD instructions for Ascon.

• Natural side-channel protection. Ascon is a bitsliced design with a small state
size, which means that straightforward software implementations require no data-
dependent table look-ups or other cache accesses. On many platforms, all data can
be kept in registers during computations. This is for instance important in cloud
applications to prevent cross-VM attacks and other cache-based attacks.

Use Case 3: Defense in Depth

Although this is not a recommended use case for Ascon, it nevertheless offers some robust-
ness in misuse settings as discussed in Section 3.1.

While Ascon should never be used without fresh nonces, and unverified plaintexts
should never be released, we have added countermeasures to limit the damage in such
scenarios. Compared to other sponge-based designs, Ascon uses a keyed initialization and
a keyed finalization. Hence, a potential recovery of the internal state during data processing
triggered by a nonce misuse or release of unverified plaintext neither leads to a recovery of
the secret key, nor allows universal forgery. However, in practical settings, if the nonce is
only reused very few times and keys are exchanged after a few authentication failures, we
expect state recoveries to be infeasible.

3.3 Comparison with AES-GCM

Compared to AES-GCM, the advantages of Ascon are its small state size of 320 bits, its low
area in hardware implementations, and significantly less overhead to provide side-channel
resistant implementations. In general, Ascon is significantly easier to implement securely
from scratch than AES-GCM in both hardware and software. The disadvantages of Ascon
compared to AES-GCM are that Ascon is not parallelizable on a message block level and,
since it is a dedicated design, cannot profit from existing high-performance implementations
of AES such as Intel’s AES-NI instruction set.
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Chapter 4

Security Analysis

4.1 Basic Properties

In this section, we give some known properties of the S-box used in Ascon. Table 10 in Ap-
pendix A shows the differential probabilities corresponding to input and output differences.
As can be seen in the table, the maximum differential probability of the S-box is 2−2 and
its differential branch number is 3. Table 11 shows the biases of the linear approximation
defined by corresponding input and output masks. The maximum linear probability of the
S-box is 2−2 and its linear branch number is 3.

Let x0, x1, x2, x3, x4 and y0, y1, y2, y3, y4 be the 5-bit input and output of the S-box,
where x0 refers to the most significant bit or the first register word of the S-box. Then the
algebraic normal form (ANF) of the S-box is given by:

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0,

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0,

y2 = x4x3 + x4 + x2 + x1 + 1,

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0,

y4 = x4x1 + x4 + x3 + x1x0 + x1.

Note that the number of monomials which appear in the polynomial representation is
smaller than that of a randomly generated S-box and the algebraic degree is 2. Though
one might claim that this S-box is weak in terms of algebraic attacks, we have not found
any practical attack on Ascon using these properties.

However, it should be remarked that the low algebraic degree of the S-box and the small
number of rounds of pa and pb results in rather efficient zero-sum distinguishers [15] for the
two permutations. Hence, the two permutations cannot be considered as perfect random
permutations.

4.2 Differential and Linear Propagation

In this section, we will discuss the security of Ascon against differential and linear crypt-
analysis. It is easy to see that the branch number of Σi is only 4 and that this alone
might not be enough to get good bounds against differential and linear attacks in Ascon.
However, in combination with the S-box, which has branch number 3, and the fact that
different rotation values are used in all the Σi, the number of active S-boxes is increased
significantly. We have confirmed that the minimum number of active S-boxes of 3 rounds
is at least 15 and 13 for any differential and linear trail.

For results on more than 3 rounds, we used a heuristic search tool [14] to find good
differential and linear trails for more rounds to get close to the real bound. The results are
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listed in Table 6. The best truncated differential and linear trails for 4 rounds is given in
Table 7a and Table 7b, respectively. We want to note that we could not find any differential
and linear trails for more than 4 rounds with less than 64 active S-boxes.

Table 6: Number of active S-boxes for up to 4 rounds of p (∗ from heuristic search).

rounds
# active S-boxes

differential linear

1 1 1
2 4 4
3 15 13
4 ∗44 ∗43

Table 7: The best known trails for 4 rounds of p (in truncated notation).

(a) Differential 4-round trail

Round Truncated trail # active S-boxes

0 b008db32a11104c9 23
1 0000010000201000 3
2 0001010000000004 3
3 880909022a100226 15

total 44

(b) Linear 4-round trail

Round Truncated trail # active S-boxes

0 0014342c0c091210 15
1 0000000808000200 3
2 8040000800000000 3
3 2fc00008218a7a39 22

total 43

4.3 Collision-Producing Differential

Besides the differential propagation in Ascon, an attacker is in particular interested in
collision-producing differentials, i.e., differentials with only differences in the rate part Sr

of the state at the input and output of pb, since such differentials might be used for a
forgery attack on the authenticated encryption scheme. However, considering the good
differential properties of pb and the results of the previous chapters, it is very unlikely that
such differentials with a good probability exist. The best truncated collision-producing
differential trails we could find for pb in Ascon-128 and Ascon-128a using a heuristic
search algorithm have 117 and 192 active S-boxes, respectively. The truncated differential
trails are given in Tables 8a and 8b.
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Table 8: Collision-producing differential trails for Ascon (in truncated notation).

(a) 6-round trail for Ascon-128

Round Truncated trail # active S-boxes

0 8000000000000000 1
1 8100000001400004 5
2 9902a00003c64086 17
3 fcf7eee14feefdf7 48
4 dba6fe7b4fef8cef 45
5 0000400000000000 1

total 117

(b) 8-round trail for Ascon-128a

Round Truncated trail # active S-boxes

0 8000000000000000 1
1 c200000000000000 3
2 e238e10000000000 11
3 73b7fbf67f6f19f0 44
4 bb4ffe8fd5dddf7f 48
5 fffffdffffffffff 63
6 2d0486c240902436 20
7 2080000000000000 2

total 192

4.4 Impossible Differentials

In this section, we will discuss the application of impossible differential cryptanalysis to
Ascon. Using an automated search tool, we were able to find impossible differentials for up
to 5 rounds of the permutation and it is likely that impossible differentials for more rounds
exist. However, we have not found any practical attack on Ascon using this property of
the permutation. An impossible differential for 5 rounds of the permutation is given in
Table 9.

Table 9: Impossible differential for Ascon, covering 5 rounds of p.

input differential output differential
after 5 rounds

x0 0000000000000000 0000000000100000

x1 0000000000000000 0000000000000000

x2 0000000000000000 → 0000000000000000

x3 0000000000000000 0000000000000000

x4 8000000000000000 0000000000000000
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Chapter 5

Design Rationale

The main goal of Ascon is a very low memory footprint in hardware and software, while
still being fast and providing a simple analysis and good bounds for the security. The design
rationale behind Ascon is to provide the best trade-off between security, size and speed in
both software and hardware, with a focus on size.

Ascon is based on the sponge design methodology [6]. The permutation of Ascon uses
an iterated substitution-permutation-network (SPN), which provides good cryptographic
properties and fast diffusion at a low cost. To provide these properties, the main components
of Ascon are inspired from standardized and well-analyzed primitives. The substitution
layer uses an improved version of the S-box used in the χ mapping of Keccak [8]. The
permutation layer uses linear functions similar to the Σ functions used in SHA-2. Details
on the design principles for each component are given in the following sections.

5.1 Choice of the Mode

The design principles of Ascon follow the sponge construction [6], to be more precise,
they are very similar to SpongeWrap [7] and MonkeyDuplex [13]. The sponge-based design
has several advantages compared to other available construction methods like some block
cipher- or hash function-based modes, and other dedicated designs:

• The sponge construction is well-studied and has been analyzed and proven secure
for different applications in a large amount of publications. Moreover, the sponge
construction is used in the SHA-3 winner Keccak.

• Flexible to adapt for other functionality (hash, MAC, cipher) or to designs that are
nonce-reuse resistant and secure under release-of-unverified-plaintext.

• Elegant and simple design, obvious state size, no key schedule.

• Plaintext and ciphertext blocks can both be computed online, without waiting for the
complete message or even the message length.

• Little implementation overhead for decryption, which uses the same round permuta-
tion as encryption.

• Weak round transformations can be used to process additional plaintext blocks, im-
proving the performance for long messages.

Compared to other sponge-based designs, Ascon uses a stronger keyed initialization and
keyed finalization phase. The result is that even an entire state recovery is not sufficient to
recover the secret key or to allow universal forgery.
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The addition of 0319 ‖ 1 after the last processed associated data block and the first
plaintext block acts as a domain separation to prevent attacks that change the role of
plaintext and associated data blocks.

If no associated data and only an incomplete plaintext block are present, there is no
additional intermediate round transformation pb, only the initialization and finalization
calls pa. To prevent that key additions between the two applications of pa cancel each
other out, they are added to different parts of the capacity part Sc of the state.

5.2 Choice of the Round Constants

The round constants have been chosen large enough to avoid slide, rotational, self-similarity
or other attacks. Their values were chosen in a simple, obvious way (increasing and decreas-
ing counter for the two halves of the affected byte), which makes them easy to compute
using a simple counter and inversion operation. In addition, their low entropy shows that
the constants are not used to implement any backdoors.

The pattern can also easily be extended for up to 16 rounds if a very high security
margin is desired. Adding more than 16 rounds is not expected to further improve the
security margin.

The position for inserting the round constants (in word x2) was chosen so as to allow
pipelining with the next or previous few operations (message injection in the first round or
the following instructions of the bit-sliced S-box implementation).

Similar to the round constants, the initialization vector is forced to be asymmetric in
each word by including the parameters k, r, a, b in fixed positions and fixed 0 bits in others.
This inclusion of the parameters, in particular b and r, also serves to distinguish the different
members of the Ascon family.

5.3 Choice of the Substitution Layer

The substitution layer is the only non-linear part of the round transformation. It mixes 5
bits, each at the same bit position in one of the 5 state words. The S-box was designed
according to the following criteria:

• Invertible and no fix-points,

• Efficient bit-sliced implementation with few, well pipelinable instructions,

• Each output bit depends on at least 4 input bits,

• Algebraic degree 2 to facilitate threshold implementations and masking,

• Maximum differential and linear probability 1/4,

• Differential and linear branch number 3,

• Avoid trivially iterable differential properties in the message injection positions.

The χ mapping of Keccak fulfills several of the aforementioned properties and is al-
ready well analyzed. In addition, the χ mapping is highly parallelizable and has a compact
description with relatively few instructions. This makes χ fast in both, software and hard-
ware. The drawback of χ are its differential and linear branch numbers (both 2), a fix-point
at value zero and that each output bit only depends on 3 input bits, only two of them
non-linearly.

For a better interaction with the linear layer of Ascon and a better trade-off between
performance and security, we require a branch number of 3. This and the other additional
requirements can be achieved without destroying other properties by adding lightweight
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affine transformations to the input and output of χ. The costs of these affine transformations
are quickly amortized since a branch number of 3 (together with an according linear layer)
essentially doubles the number of active S-boxes from round to round (in sparse trails).
There are only a handful of options for a lightweight transformation (few xor operations)
that achieve both required branch numbers. We experimentally selected the candidate that
provided the best diffusion in combination with the selected linear layer.

The bit-sliced design of the S-box has several benefits: it is highly efficient to imple-
ment parallel invocations on 64-bit processors (and other architectures), and no look-up
tables are necessary. This effectively precludes typical cache-timing attacks for software
implementations.

The algebraic degree of 2 theoretically makes the S-box more prone to analysis with
algebraic attacks; however, we did not find any practical attacks. We consider it more im-
portant to allow efficient implementation of side-channel countermeasures, such as threshold
implementation [22] and masking, which is facilitated by the low degree.

The differential and linear probabilities of the S-box are not ideal, but using one of the
available 5-bit AB/APN functions like in Fides [9] was not an option due to their much
more costly bit-sliced implementation. Considering the relatively lightweight linear layer,
repeating more rounds of the cheaper, reasonably good S-box is more effective than fewer
rounds of a perfect, but very expensive S-box.

5.4 Choice of the Linear Diffusion Layer

The linear diffusion layer mixes the bits within each 64-bit state word. For resistance
against linear and differential cryptanalysis, we required a branch number of at least 3.
Additionally, the interaction between the linear layers for separate words should provide
very good diffusion, so different linear functions are necessary for the 5 different words.
These requirements should be achieved at minimal cost. Although simple rotations are
almost for free in hardware and relatively cheap in software, the slow diffusion requires a
very large number of rounds. Moreover, the best performance can be achieved by balancing
the costs of the substitution and linear layer.

On the other hand, mixing layers as used in AES-based designs provide a high branch
number, but are too expensive to provide an acceptable speed at a small size. The mixing
layer of Keccak is best used with a large number of large words. Other possible candidates
are the linear layers of Luffa [11], Hamsi [19], other SPN-based designs. However, these
candidates were either too slow or provide a less optimal diffusion.

The rotation values of the linear diffusion layer in Ascon are chosen similar to those of
Σ in SHA-2 [21]. These functions offer a branch number of 4. Additionally, if we choose
one rotation constant of each Σ function to be zero, the performance can be improved while
the branch number stays the same. On the other hand, the cryptographic strength can
be improved by using different rotation constants for each 64-bit word without sacrifice of
performance. In this case, the branch number of the substitution and linear layer amplify
each other which increases the minimum number of active S-boxes.

5.5 Statement

The designers have not hidden any weaknesses in this cipher.
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Chapter 6

Intellectual Property

The submitters are not aware of any patent involved in Ascon, and it will not be patented.
If any of this information changes, the submitters will promptly (and within at most one
month) announce these changes on the crypto-competitions mailing list.
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Chapter 7

Consent

The submitters hereby consent to all decisions of the CAESAR selection committee re-
garding the selection or non-selection of this submission as a second-round candidate, a
third-round candidate, a finalist, a member of the final portfolio, or any other designa-
tion provided by the committee. The submitters understand that the committee will not
comment on the algorithms, except that for each selected algorithm the committee will sim-
ply cite the previously published analyses that led to the selection of the algorithm. The
submitters understand that the selection of some algorithms is not a negative comment
regarding other algorithms, and that an excellent algorithm might fail to be selected simply
because not enough analysis was available at the time of the committee decision. The sub-
mitters acknowledge that the committee decisions reflect the collective expert judgments
of the committee members and are not subject to appeal. The submitters understand that
if they disagree with published analyses then they are expected to promptly and publicly
respond to those analyses, not to wait for subsequent committee decisions. The submitters
understand that this statement is required as a condition of consideration of this submission
by the CAESAR selection committee.
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Hardware and Embedded Systems – CHES 2013, volume 8086 of LNCS, pages 142–158.
Springer, 2013.

[10] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Gilles Van Assche. Efficient and first-order DPA resistant implementations of keccak.
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analysis of ascon. In Kaisa Nyberg, editor, Topics in Cryptology – CT-RSA 2015,
volume 9048 of LNCS, pages 371–387. Springer, 2015.

[16] Kris Gaj and ATHENa Team. ATHENa: Automated Tool for Hardware Evaluation,
2016. https://cryptography.gmu.edu/athena/.

[17] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhofer. Suit up!
- Made-to-measure hardware implementations of ASCON. In Digital System Design –
DSD 2015, pages 645–652. IEEE Computer Society, 2015.

[18] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2 c/2 security in sponge-
based authenticated encryption modes. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology – ASIACRYPT 2014, volume 8873 of LNCS, pages 85–104.
Springer, 2014.
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Appendix A

S-box distribution tables

A.1 Differential distribution table

Table 10: The differential profile of the Ascon S-box.

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · · · · 4 · 4 · 4 · 4 · · · · · · · · 4 · 4 · 4 · 4 ·
2 · · · · · · · · · · · · · · · · · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4
3 · 4 · · · 4 · · · 4 · · · 4 · · 4 · · · 4 · · · 4 · · · 4 · · ·
4 · · · · · · 8 · · · · · · · 8 · · · · · · · 8 · · · · · · · 8 ·
5 · · · · · · · · · · · · · · · · · 4 · 4 4 · 4 · 4 · 4 · · 4 · 4
6 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
7 · · 4 4 · · 4 4 · · 4 4 · · 4 4 · · · · · · · · · · · · · · · ·
8 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4
9 · 2 · 2 2 · 2 · 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 · 2 · 2 2 · 2 ·
a · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2
b · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2
c · 8 · · · · · · 8 · · · · · · · 8 · · · · · · · · 8 · · · · · ·
d · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · · 2 · 2 · 2 · 2
e · 4 4 · 4 · · 4 · · · · · · · · · 4 4 · 4 · · 4 · · · · · · · ·
f · · · · · · · · 4 4 · · 4 4 · · · · · · · · · · 4 4 · · 4 4 · ·

10 · · · · · · · · · 8 · 8 · · · · · · · · · · · · 8 · 8 · · · · ·
11 · · · · · · · · · · · · · · · · · 8 · 8 · 8 · 8 · · · · · · · ·
12 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·
13 · · 8 · 8 · · · · · 8 · 8 · · · · · · · · · · · · · · · · · · ·
14 · · · · 4 4 4 4 · · · · 4 4 4 4 · · · · · · · · · · · · · · · ·
15 · · · · · 4 · 4 · 4 · 4 · · · · · 4 · 4 · · · · · · · · · 4 · 4
16 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · ·
18 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2
19 · · · 4 · · 4 · 4 · · · · 4 · · 4 · · · · 4 · · · · · 4 · · 4 ·
1a · 2 2 · · 2 2 · 2 · · 2 2 · · 2 · 2 2 · · 2 2 · 2 · · 2 2 · · 2
1b · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · ·
1c · 4 · 4 · · · · 4 · 4 · · · · · 4 · 4 · · · · · · 4 · 4 · · · ·
1d · · · 4 · 4 · · 4 · · · · · 4 · 4 · · · · · 4 · · · · 4 · 4 · ·
1e · · · · · · · · 2 2 2 2 2 2 2 2 · · · · · · · · 2 2 2 2 2 2 2 2
1f · · 4 4 4 4 · · · · · · · · · · · · 4 4 4 4 · · · · · · · · · ·

25



A.2 Linear distribution table

Table 11: The linear profile of the Ascon S-box.

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · 8 · · 4 4 · · -4 4 · · · 4 4 · · 4 -4 4 · -4 · -4 · -4 ·
2 · · · · · · -8 8 · · 4 4 · · 4 4 · · 4 4 · · -4 -4 · · · · · · · ·
3 · 8 · · · · · · · 4 · 4 · 4 · -4 -8 · · · · · · · 4 · 4 · 4 · -4 ·
4 · · · 4 · -4 · · · · 4 · · 4 -4 -4 · · 4 · -4 · · · · -8 · -4 -4 · 4 -4
5 · · · 4 · 4 · · · -4 · · · · · -4 · · · -4 4 · -4 -4 4 · -4 4 · -8 · -4
6 · · · 4 · -4 · · · · · -4 · 4 · · · · · -4 -4 · -4 -4 · 8 · -4 -4 · -4 4
7 · · · -4 · -4 · · · 4 4 4 · · -4 · · · -4 · -4 · · · -4 · -4 4 · -8 · 4
8 · · · · · · · · · · 4 4 · · -4 -4 · · · · · · · · · 8 -4 4 · 8 4 -4
9 · · · · · · · -8 · -4 · 4 · 4 · 4 · · 4 4 · · -4 4 4 · · 4 -4 · · 4
a · · · · · · · · · · · · · · · · · · 4 4 · · 4 4 · 8 4 -4 · -8 4 -4
b · 8 · · · · · · · -4 4 · · -4 -4 · 8 · · · · · · · 4 · · -4 4 · · 4
c · · -8 4 -8 -4 · · · · · 4 · -4 · · · · -4 · 4 · · · · · 4 · -4 · · ·
d · · · -4 -8 4 · · · 4 -4 -4 · · -4 · · · · 4 -4 · -4 -4 4 · · · · · 4 ·
e · · · -4 8 -4 · · · · -4 · · -4 -4 -4 · · · 4 4 · -4 -4 · · 4 · -4 · · ·
f · · 8 -4 -8 -4 · · · -4 · · · · · -4 · · 4 · 4 · · · -4 · · · · · -4 ·

10 · · · · · · -8 · · 4 · -4 -4 · -4 · · · · · 4 -4 4 4 4 · -4 · -4 · -4 ·
11 · · · · · · · · -8 · -4 4 -4 -4 · · · 8 4 -4 -4 -4 · · · · · · · · · ·
12 · -8 · · · · · · · -4 4 · -4 · · -4 · · -4 4 -4 -4 · · 4 · 4 · 4 · -4 ·
13 · · · · · · -8 -8 · · · · 4 -4 4 -4 · · · · -4 4 4 -4 · · · · · · · ·
14 · · · 4 · 4 · · · 4 4 -4 -4 -4 · -4 · · 4 · · 4 -4 4 -4 · 4 4 · · · 4
15 · · · 4 · -4 · · · · · -4 4 · -4 4 · 8 · 4 · 4 · · · · · 4 4 · -4 -4
16 · · · -4 · -4 · · · 4 · · -4 4 4 · 8 · · -4 · 4 · · 4 · 4 4 · · · -4
17 · · · 4 · -4 · · 8 · -4 · -4 · · · · · 4 · · -4 4 -4 · · · 4 4 · 4 4
18 · · · · · · · -8 · 4 4 · -4 · · 4 · · · · 4 -4 -4 -4 -4 · · -4 4 · · -4
19 · · · · · · · · · · · · 4 -4 -4 4 · -8 4 -4 -4 -4 · · · · 4 4 · · -4 -4
1a · 8 · · · · · · · -4 · -4 -4 · 4 · · · -4 4 -4 -4 · · -4 · · 4 -4 · · -4
1b · · · · · · · · 8 · -4 4 -4 -4 · · · · · · -4 4 -4 4 · · -4 -4 · · -4 -4
1c · · 8 4 · -4 · · · 4 · · 4 -4 4 · · · -4 · · -4 -4 4 4 · · · · · 4 ·
1d · · · -4 · 4 · · 8 · 4 · 4 · · · · 8 · -4 · -4 · · · · 4 · -4 · · ·
1e · · · 4 · 4 · · · 4 -4 4 4 4 · -4 8 · · 4 · -4 · · -4 · · · · · -4 ·
1f · · 8 4 · 4 · · · · · 4 -4 · -4 4 · · -4 · · 4 4 -4 · · 4 · -4 · · ·
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Appendix B

Changelog

B.1 Changes from v1 (Round 1) to v1.1 (Round 2)

Functional changes (tweak)

• Modification of secondary recommendation Ascon-96:

Change: The key size and security claim for Ascon-96 was increased from 96 bits to
128 bits, and Ascon-96 consequently renamed to Ascon-128a.

Justification: With this change, we take advantage of recent results on beyond-c/2
security of sponge modes, in particular of the proofs presented at ASIACRYPT 2014
by Jovanovic et al. [18] and at FSE 2015 by Andreeva et al. [2]. These results allow to
benefit from the doubled rate of Ascon-96 (128 bits, with 8-round permutation) com-
pared to Ascon-128 (64 bits, with 6-round permutation), without having to decrease
the security level for the smaller capacity.

Document updates

• Added cryptanalysis results published at CT-RSA 2015 [15] to Section 4.

• Figures 1a, 1b and 4 updated for clarity wrt. Ascon-128a.

• Typos and minor inconsistencies corrected.

B.2 Changes from v1.1 (Round 2) to v1.2 (Round 3)

Functional changes (tweak)

• Modification of the round constant schedule:

Change: pb now uses round constants ca−b, . . . , ca−1 instead of c0, . . . , cb−1 of pa

(Table 2).

Justification: To increase compatibility of the permutations with other sponge modes,
such as FIPS 202. This change is not expected to have any effects on the security
analysis or performance of Ascon.

Document updates

• Rewrote Features section to reflect the CAESAR use cases, and moved this section
before Security Analysis.

• Added references to recent analysis and implementations.

• Minor editorial updates.
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